A Data Analytics Framework for Business in Small and Medium-Sized Organizations | SpringerLink
Skip to main content

A Data Analytics Framework for Business in Small and Medium-Sized Organizations

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2017 (IDT 2017)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 73))

Included in the following conference series:

Abstract

Data Analytics and derived Data Mining are powerful approaches for the analysis of Big Data. There are a lot of commercial Data Analytics applications enterprises can take advantage of. In the past, many firms were still critical of Data Analytics. Through efforts made in the field of the establishment of process standards, managers might be convinced of Data Analytics advantages. Many small and medium-sized organizations are still exempt from this development. The main reasons are a lack of business prioritization, a lack of (IT) knowledge, and a lack of overview of Data Analytics issues. To reduce that problem, we developed a useful process framework. It resembles with existing frameworks, but is highly simplified and easy to use. To exemplify, how this framework can be put into action by the means of a retail site location analysis, we set up a case study as best practice. There we are focusing on Data Mining because it is the most important domain of Data Analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohanty, H.: Big data: an introduction. In: Bhuyan, P., Chenthati, D., Mohanty, H. (eds.) Big Data: A Primer, pp. 1–28. Springer, New Delhi (2015)

    Chapter  Google Scholar 

  2. Giudici, P.: Applied Data Mining: Statistical Methods for Business and Industry. Wiley, Chichester (2005)

    MATH  Google Scholar 

  3. Coleman, S., et al.: How Can SMEs Benefit from Big Data? Challenges and a Path Forward. Qual. Reliab. Eng. Int. 32, 2151–2164 (2016)

    Article  Google Scholar 

  4. IDC Digital Universe. https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm. Accessed 6 Dec 2016

  5. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “Big Data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

    Article  Google Scholar 

  6. Härting, R., Schmidt, R., Möhring, M.: Business intelligence & big data: Eine strategische Waffe für KMU? In: Härting, R. (ed.) Big Data – Daten strategisch nutzen, pp. 11–29. Books on Demand, Norderstedt (2014)

    Google Scholar 

  7. McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J., Barton, D.: Big data. The management revolution. Harvard Bus. Rev. 90(10), 61–67 (2012)

    Google Scholar 

  8. Schmidt, R., Möhring M., Maier, S., Pietsch, J., Härting, R.: Big data as strategic enabler – insights from central European enterprises. In: Abramowicz, W., Kokkinaki, A. (eds.) 17th International Conference on Business Information Systems, Lecture Notes in Business Information Processing, pp. 50–60. Springer, Cham (2014)

    Google Scholar 

  9. Hui, S.C., Jha, G.: Data mining for customer service support. Inf. Manage. 38, 1–13 (2000)

    Article  Google Scholar 

  10. Chen, L.-F., Tsai, C.-T.: Data mining framework based on rough set theory to improve location selection decisions: a case study of a restaurant chain. Tourism Manage. 53, 197–206 (2016)

    Article  Google Scholar 

  11. Watterson, K.: Datamining poised to go mainstream. http://www.datamation.com/datbus/article.php/616511/Datamining-poised-to-go-mainstream.htm. Accessed 6 Dec 2016

  12. Ghaderi, H., Fei, J., Shakeizadeh, M.H.: Data mining practice in SMEs: a customer relationship management perspective. In: ANZAM, pp. 1–12 (2013)

    Google Scholar 

  13. Seufert, A.: Entwicklungsstand, Potentiale und zukünftige Herausforderungen von Big Data – Ergebnisse einer empirischen Studie. HMD – Praxis der Wirtschaftsinformatik 51, 412–423 (2014)

    Article  Google Scholar 

  14. European Commission. http://cordis.europa.eu/result/rcn/93077_en.html. Accessed 6 Dec 2016

  15. Commission, E.: User guide to the SME Definition. Publications Office of the European Union, Luxemburg (2015)

    Google Scholar 

  16. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. Am. Assoc. Artif. Intell. 17(3), 37–54 (1996)

    Google Scholar 

  17. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)

    Article  Google Scholar 

  18. Deshpande, B., Kotu, V.: Predictive Analytics and Data Mining. Concepts and Practice with RapidMiner. Morgan Kaufmann, Amsterdam (2015)

    Google Scholar 

  19. Mitra, S., Pal, S.K., Mitra, P.: Data mining in soft computing framework: a survey. IEEE Trans. Neural Networks 13(1), 3–14 (2002)

    Article  Google Scholar 

  20. Han, J., Kamber, M.: Data Mining. Concepts and Techniques. Morgan Kaufmann, Amsterdam (2006)

    MATH  Google Scholar 

  21. Seng, J.-L., Chen, T.C.: An analytic approach to select data mining for business decision. Expert Syst. Appl. 37, 8042–8057 (2010)

    Article  Google Scholar 

  22. Ahmed, S.: Applications of data mining in retail business. In: International Conference on Information Technology: Coding and Computing (ITCC 2004), vol. 2, pp. 455–459 (2004)

    Google Scholar 

  23. Coleman, S.Y.: Data-mining opportunities for small and medium enterprises with official statistics in the UK. J. Official Stat. 32(4), 849–865 (2016)

    Article  Google Scholar 

  24. Davenport, T.H., Patil, D.J.: Data scientist: the sexiest job of the 21st century. Harvard Bus. Rev. 90(10), 70–76 (2012)

    Google Scholar 

  25. Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. ACM SIGKDD Explor. Newslett. 14(2), 1–5 (2013)

    Article  Google Scholar 

  26. Chapman, P. et al.: ftp://ftp.software.ibm.com/software/analytics/spss/support/Modeler/Documentation/14/UserManual/CRISP-DM.pdf. Accessed 15 Dec 2016

  27. Kurgan, L.A., Musilek, P.: A survey of knowledge discovery and data mining process models. Knowl. Eng. Rev. 21(1), 1–21 (2006)

    Article  Google Scholar 

  28. Azevedo, A., Santos, M.F.: KDD, SEMMA and CRISP-DM: a parallel overview. In: Proceedings of the IADIS European Conference on Data Mining, pp. 182–185 (2008)

    Google Scholar 

  29. SAS Institute Inc. https://web.archive.org/web/20120308165638/http://www.sas.com/offices/europe/uk/technologies/analytics/datamining/miner/semma.html/. Accessed 17 Dec 2016

  30. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., Zhou, Z.H.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  31. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

    Article  Google Scholar 

  32. Gürsel, M., Tölke, O., von dem Bussche, G.: Branchenstudie Tankstellenmarkt Deutschland 2015. Scope Investor Services, Berlin (2016)

    Google Scholar 

  33. Roig-Tierno, N., et al.: The retail site location decision process using GIS and the analytical hierarchy process. Appl. Geogr. 40, 191–198 (2013)

    Article  Google Scholar 

  34. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Amsterdam (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ralf-Christian Härting or Christopher Reichstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Dittert, M., Härting, RC., Reichstein, C., Bayer, C. (2018). A Data Analytics Framework for Business in Small and Medium-Sized Organizations. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59424-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59423-1

  • Online ISBN: 978-3-319-59424-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics