Abstract
Usually it is hard to classify the situation where uncertainty of randomness and fuzziness exists simultaneously. This paper presents a rough set approach applying fuzzy random variable and statistical t-test to text-mine a large data repository of experts’ diagnoses provided by a Japanese power company. The algorithms of rough set and statistical t-test are used to distinguish whether a subset can be classified in the object set or not. The expected-value-approach is also applied to calculate the fuzzy value with probability into a scalar value.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
Gil, M.A., Miguel, L.D., Ralescu, D.A.: Overview on the development of fuzzy random variables. Fuzzy Sets Syst. 157(19), 2546–2557 (2006)
Kwakernaak, H.: Fuzzy random variables-1. definitions and theorems. Inf. Sci. 15(1), 1–29 (1978)
Kwakernaak, H.: Fuzzy random variables-2. algorithms and examples for discrete case. Inf. Sci. 17(3), 253–278 (1979)
Puri, M.L., Ralescu, D.A.: The concept of normality for fuzzy random variables. Ann. Probab. 13(4), 1373–1379 (1985)
Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114(2), 409–422 (1986)
Nahmias, S.: Fuzzy variables. Fuzzy Sets Syst. 1(2), 97–111 (1978)
Lin, P.-C., Wu, B., Watada, J.: Kolmogorov-Smirnov two sample test with continuous fuzzy data. Working paper ISME20090401001, pp. 1–21 (2009)
Watada, J., Lin, L.-C., Qian, M., Lin, P.-C.: A fuzzy random variable approach to restructuring of rough sets through statistical test. In: Proceedings of RSFGr2009, pp. 2–3 (2009)
Watada, J., Wang, S., Pedrycz, W.: Building confidence-interval-based fuzzy random regression models. IEEE Trans. Fuzzy Syst. 17(6), 1273–1283 (2009). doi:10.1109/TFUZZ.2009.2028331
Wang, S., Watada, J.: T-independence condition for fuzzy random vector based on continuous triangular norms. J. Uncertain Syst. 2(2), 155–160 (2008)
Wang, S., Watada, J.: Studying distribution functions of fuzzy random variables and its applications to critical value functions. Int. J. Innov. Comput. Inf. Control 5(2), 279–292 (2009)
Wang, S., Watada, J.: Fuzzy Stochastic Optimization: Theory, Models and Applications. Springer, New York (2012). ISBN 978-1-4419-9559-9
Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected valued models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)
Liu, Y.-K., Liu, B.: Fuzzy random variable: a scalar expected value operator. Fuzzy Optim. Decis. Making 2(2), 143–160 (2003)
Liu, Y., Liu, B.: Fuzzy random programming with equilibrium chance constraints. Inf. Sci. 170(2–4), 363–395 (2005)
Acknowledgement
This work was supported partially by Petroleum Research Fund (PRF) No. 0153AB-A33 through Universiti Teknologi PETRONAS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Watada, J., Tan, S.C., Matsumoto, Y., Vasant, P. (2018). Rough Set-Based Text Mining from a Large Data Repository of Experts’ Diagnoses for Power Systems. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-59424-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59423-1
Online ISBN: 978-3-319-59424-8
eBook Packages: EngineeringEngineering (R0)