Rough Set-Based Text Mining from a Large Data Repository of Experts’ Diagnoses for Power Systems | SpringerLink
Skip to main content

Rough Set-Based Text Mining from a Large Data Repository of Experts’ Diagnoses for Power Systems

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2017 (IDT 2017)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 73))

Included in the following conference series:

Abstract

Usually it is hard to classify the situation where uncertainty of randomness and fuzziness exists simultaneously. This paper presents a rough set approach applying fuzzy random variable and statistical t-test to text-mine a large data repository of experts’ diagnoses provided by a Japanese power company. The algorithms of rough set and statistical t-test are used to distinguish whether a subset can be classified in the object set or not. The expected-value-approach is also applied to calculate the fuzzy value with probability into a scalar value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  2. Gil, M.A., Miguel, L.D., Ralescu, D.A.: Overview on the development of fuzzy random variables. Fuzzy Sets Syst. 157(19), 2546–2557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kwakernaak, H.: Fuzzy random variables-1. definitions and theorems. Inf. Sci. 15(1), 1–29 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kwakernaak, H.: Fuzzy random variables-2. algorithms and examples for discrete case. Inf. Sci. 17(3), 253–278 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Puri, M.L., Ralescu, D.A.: The concept of normality for fuzzy random variables. Ann. Probab. 13(4), 1373–1379 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114(2), 409–422 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nahmias, S.: Fuzzy variables. Fuzzy Sets Syst. 1(2), 97–111 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin, P.-C., Wu, B., Watada, J.: Kolmogorov-Smirnov two sample test with continuous fuzzy data. Working paper ISME20090401001, pp. 1–21 (2009)

    Google Scholar 

  9. Watada, J., Lin, L.-C., Qian, M., Lin, P.-C.: A fuzzy random variable approach to restructuring of rough sets through statistical test. In: Proceedings of RSFGr2009, pp. 2–3 (2009)

    Google Scholar 

  10. Watada, J., Wang, S., Pedrycz, W.: Building confidence-interval-based fuzzy random regression models. IEEE Trans. Fuzzy Syst. 17(6), 1273–1283 (2009). doi:10.1109/TFUZZ.2009.2028331

    Article  Google Scholar 

  11. Wang, S., Watada, J.: T-independence condition for fuzzy random vector based on continuous triangular norms. J. Uncertain Syst. 2(2), 155–160 (2008)

    Google Scholar 

  12. Wang, S., Watada, J.: Studying distribution functions of fuzzy random variables and its applications to critical value functions. Int. J. Innov. Comput. Inf. Control 5(2), 279–292 (2009)

    Google Scholar 

  13. Wang, S., Watada, J.: Fuzzy Stochastic Optimization: Theory, Models and Applications. Springer, New York (2012). ISBN 978-1-4419-9559-9

    Book  MATH  Google Scholar 

  14. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected valued models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)

    Article  Google Scholar 

  15. Liu, Y.-K., Liu, B.: Fuzzy random variable: a scalar expected value operator. Fuzzy Optim. Decis. Making 2(2), 143–160 (2003)

    Article  MathSciNet  Google Scholar 

  16. Liu, Y., Liu, B.: Fuzzy random programming with equilibrium chance constraints. Inf. Sci. 170(2–4), 363–395 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported partially by Petroleum Research Fund (PRF) No. 0153AB-A33 through Universiti Teknologi PETRONAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzo Watada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Watada, J., Tan, S.C., Matsumoto, Y., Vasant, P. (2018). Rough Set-Based Text Mining from a Large Data Repository of Experts’ Diagnoses for Power Systems. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59424-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59423-1

  • Online ISBN: 978-3-319-59424-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics