Abstract
The Modus Ponens property for fuzzy implication functions is essential in the inference process in approximate reasoning. It is usually considered with respect to a continuous t-norm T but it can be generalized to any conjunctor and, in particular, to a conjunctive uninorm U. In this paper, it is investigated when RU-implications derived from uninorms satisfy the Modus Ponens with respect to a conjunctive uninorm U. The new property, called here U-Modus Ponens, is studied in detail for RU-implications derived from uninorms lying in the classes of representable uninorms and uninorms continuous in the open unit square.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms. Inf. Sci. 180, 3992–4005 (2010)
Alsina, C., Trillas, E.: When \((S, N)\)-implications are \((T, T_1)\)-conditional functions? Fuzzy Sets Syst. 134, 305–310 (2003)
Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008)
Baczyński, M., Jayaram, B.: (U, N)-implications and their characterizations. Fuzzy Sets Syst. 160, 2049–2062 (2009)
Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631–642 (1999)
Baets, B., Fodor, J.C.: Residual operators of uninorms. Soft. Comput. 3, 89–100 (1999)
Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161, 149–157 (2010)
Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of a class of uninorms with continuous underlying operators. Fuzzy Sets Syst. 287, 137–153 (2016)
Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5, 411–427 (1997)
Hu, S.K., Li, Z.F.: The structure of continuous uninorms. Fuzzy Sets Syst. 124, 43–52 (2001)
Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Dordrecht (2000)
Martín, J., Mayor, G., Torrens, J.: On locally internal monotonic operators. Fuzzy Sets Syst. 137, 27–42 (2003)
Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29, 1021–1037 (2015)
Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: Residual implications derived from uninorms satisfying the Modus Ponens. In: IFSA-EUSFLAT-2015, pp. 233–240. Atlantis Press, Gijón (2015)
Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: \(RU\) and \((U, N)\)-implications satisfying Modus Ponens. Int. J. Approx. Reason. 73, 123–137 (2016)
Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: On a generalization of the Modus Ponens: \(U\)-conditionality. In: Carvalho, J.P., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems in the series Communications in Computer and Information Science, vol. 610, pp. 387–398. Springer, Cham (2016)
Mas, M., Monserrat, M., Torrens, J.: Two types of implications derived from uninorms. Fuzzy Sets Syst. 158, 2612–2626 (2007)
Mas, M., Monserrat, M., Torrens, J.: Modus Ponens and Modus Tollens in discrete implications. Int. J. Approx. Reason. 49, 422–435 (2008)
Mas, M., Monserrat, M., Torrens, J.: A characterization of \((U, N), RU, QL\) and \(D\)-implications derived from uninorms satisfying the law of importation. Fuzzy Sets Syst. 161, 1369–1387 (2010)
Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)
Massanet, S., Torrens, J.: On a new class of fuzzy implications: h-implications and generalizations. Inf. Sci. 181, 2111–2127 (2011)
Massanet, S., Torrens, J.: An overview of construction methods of fuzzy implications. In: Baczyński, M., Beliakov, G., Bustince Sola, H., Pradera, A. (eds.) Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300, pp. 1–30. Springer, Berlin (2013)
Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40, 21–38 (2004)
Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms. Fuzzy Sets Syst. 158, 23–37 (2007)
Ruiz-Aguilera, D., Torrens, J.: S- and R-implications from uninorms continuous in \(]0,1[^2\) and their distributivity over uninorms. Fuzzy Sets Syst. 160, 832–852 (2009)
Ruiz-Aguilera, D., Torrens, J., Baets, B., Fodor, J.: Some remarks on the characterization of idempotent uninorms. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 425–434. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14049-5_44
Trillas, E., Alsina, C., Pradera, A.: On MPT-implication functions for fuzzy logic. Revista de la Real Academia de Ciencias Serie A. Matemáticas (RACSAM) 98(1), 259–271 (2004)
Trillas, E., Alsina, C., Renedo, E., Pradera, A.: On contra-symmetry and MPT-conditionality in fuzzy logic. Int. J. Intell. Syst. 20, 313–326 (2005)
Trillas, E., Campo, C., Cubillo, S.: When QM-operators are implication functions and conditional fuzzy relations. Int. J. Intell. Syst. 15, 647–655 (2000)
Trillas, E., Valverde, L.: On Modus Ponens in fuzzy logic. In: 15th International Symposium on Multiple-Valued Logic, pp. 294–301. Kingston, Canada (1985)
Acknowledgements
This paper has been supported by the Spanish Grant TIN2016-75404-P AEI/FEDER, UE.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Mas, M., Ruiz-Aguilera, D., Torrens, J. (2018). On Some Classes of RU-Implications Satisfying U-Modus Ponens. In: Torra, V., Mesiar, R., Baets, B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-59306-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-59306-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59305-0
Online ISBN: 978-3-319-59306-7
eBook Packages: EngineeringEngineering (R0)