On Some Classes of RU-Implications Satisfying U-Modus Ponens | SpringerLink
Skip to main content

On Some Classes of RU-Implications Satisfying U-Modus Ponens

  • Conference paper
  • First Online:
Aggregation Functions in Theory and in Practice (AGOP 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 581))

Included in the following conference series:

  • 658 Accesses

Abstract

The Modus Ponens property for fuzzy implication functions is essential in the inference process in approximate reasoning. It is usually considered with respect to a continuous t-norm T but it can be generalized to any conjunctor and, in particular, to a conjunctive uninorm U. In this paper, it is investigated when RU-implications derived from uninorms satisfy the Modus Ponens with respect to a conjunctive uninorm U. The new property, called here U-Modus Ponens, is studied in detail for RU-implications derived from uninorms lying in the classes of representable uninorms and uninorms continuous in the open unit square.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms. Inf. Sci. 180, 3992–4005 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alsina, C., Trillas, E.: When \((S, N)\)-implications are \((T, T_1)\)-conditional functions? Fuzzy Sets Syst. 134, 305–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  4. Baczyński, M., Jayaram, B.: (U, N)-implications and their characterizations. Fuzzy Sets Syst. 160, 2049–2062 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631–642 (1999)

    Article  MATH  Google Scholar 

  6. Baets, B., Fodor, J.C.: Residual operators of uninorms. Soft. Comput. 3, 89–100 (1999)

    Article  MATH  Google Scholar 

  7. Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161, 149–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of a class of uninorms with continuous underlying operators. Fuzzy Sets Syst. 287, 137–153 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5, 411–427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, S.K., Li, Z.F.: The structure of continuous uninorms. Fuzzy Sets Syst. 124, 43–52 (2001)

    Article  Google Scholar 

  11. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  12. Martín, J., Mayor, G., Torrens, J.: On locally internal monotonic operators. Fuzzy Sets Syst. 137, 27–42 (2003)

    Article  MATH  Google Scholar 

  13. Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29, 1021–1037 (2015)

    Article  MathSciNet  Google Scholar 

  14. Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: Residual implications derived from uninorms satisfying the Modus Ponens. In: IFSA-EUSFLAT-2015, pp. 233–240. Atlantis Press, Gijón (2015)

    Google Scholar 

  15. Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: \(RU\) and \((U, N)\)-implications satisfying Modus Ponens. Int. J. Approx. Reason. 73, 123–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: On a generalization of the Modus Ponens: \(U\)-conditionality. In: Carvalho, J.P., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems in the series Communications in Computer and Information Science, vol. 610, pp. 387–398. Springer, Cham (2016)

    Google Scholar 

  17. Mas, M., Monserrat, M., Torrens, J.: Two types of implications derived from uninorms. Fuzzy Sets Syst. 158, 2612–2626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mas, M., Monserrat, M., Torrens, J.: Modus Ponens and Modus Tollens in discrete implications. Int. J. Approx. Reason. 49, 422–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mas, M., Monserrat, M., Torrens, J.: A characterization of \((U, N), RU, QL\) and \(D\)-implications derived from uninorms satisfying the law of importation. Fuzzy Sets Syst. 161, 1369–1387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)

    Article  Google Scholar 

  21. Massanet, S., Torrens, J.: On a new class of fuzzy implications: h-implications and generalizations. Inf. Sci. 181, 2111–2127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Massanet, S., Torrens, J.: An overview of construction methods of fuzzy implications. In: Baczyński, M., Beliakov, G., Bustince Sola, H., Pradera, A. (eds.) Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300, pp. 1–30. Springer, Berlin (2013)

    Chapter  Google Scholar 

  23. Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40, 21–38 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms. Fuzzy Sets Syst. 158, 23–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ruiz-Aguilera, D., Torrens, J.: S- and R-implications from uninorms continuous in \(]0,1[^2\) and their distributivity over uninorms. Fuzzy Sets Syst. 160, 832–852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruiz-Aguilera, D., Torrens, J., Baets, B., Fodor, J.: Some remarks on the characterization of idempotent uninorms. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 425–434. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14049-5_44

    Chapter  Google Scholar 

  27. Trillas, E., Alsina, C., Pradera, A.: On MPT-implication functions for fuzzy logic. Revista de la Real Academia de Ciencias Serie A. Matemáticas (RACSAM) 98(1), 259–271 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Trillas, E., Alsina, C., Renedo, E., Pradera, A.: On contra-symmetry and MPT-conditionality in fuzzy logic. Int. J. Intell. Syst. 20, 313–326 (2005)

    Article  MATH  Google Scholar 

  29. Trillas, E., Campo, C., Cubillo, S.: When QM-operators are implication functions and conditional fuzzy relations. Int. J. Intell. Syst. 15, 647–655 (2000)

    Article  MATH  Google Scholar 

  30. Trillas, E., Valverde, L.: On Modus Ponens in fuzzy logic. In: 15th International Symposium on Multiple-Valued Logic, pp. 294–301. Kingston, Canada (1985)

    Google Scholar 

Download references

Acknowledgements

This paper has been supported by the Spanish Grant TIN2016-75404-P AEI/FEDER, UE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ruiz-Aguilera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Mas, M., Ruiz-Aguilera, D., Torrens, J. (2018). On Some Classes of RU-Implications Satisfying U-Modus Ponens. In: Torra, V., Mesiar, R., Baets, B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-59306-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59306-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59305-0

  • Online ISBN: 978-3-319-59306-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics