Bregman-Proximal Augmented Lagrangian Approach to Multiphase Image Segmentation | SpringerLink
Skip to main content

Bregman-Proximal Augmented Lagrangian Approach to Multiphase Image Segmentation

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

  • 1658 Accesses

Abstract

This work studies the optimization problem of assigning multiple labels with the minimum perimeter, namely Potts model, in the spatially continuous setting. It was extensively studied within recent years and used to many different applications of image processing and computer vision, especially image segmentation. The existing convex relaxation approaches use total-variation functionals directly encoding perimeter costs, which result in pixelwise simplex constrained optimization problems and can be efficiently solved under a primal-dual perspective in numerics. Among most efficient approaches, such challenging simplex constraints are tackled either by extra projection steps to the simplex set at each pixel, which requires intensive simplex-projection computations, or by introducing extra dual variables resulting in the dual optimization-based continuous max-flow formulation to the studied convex relaxed Potts model. However, dealing with such extra dual flow variables needs additional loads in both computation and memory; particularly for the cases with many labels. To this end, we propose a novel optimization approach upon the Bregman-Proximal Augmented Lagrangian Method (BPALM), for which the Bregman distance function, instead of the classical quadratic Euclidean distance function, is integrated in the algorithmic framework of Augmented Lagrangian Methods. The new optimization method has significant numerical advantages; it naturally avoids extra computational and memory burden in enforcing the simplex constraints and allows parallel computations over different labels. Numerical experiments show competitive performance in terms of quality and significantly reduced memory load compared to the state-of-the-art convex optimization methods for the convex relaxed Potts model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Technical report CAM09-75, UCLA, CAM, September 2009

    Google Scholar 

  2. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV 2003, pp. 26–33 (2003)

    Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  6. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Censor, Y.A., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  8. Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Technical report TR-2008-05, Department of Computer Science, University of Bonn, Bonn, Germany, November 2008

    Google Scholar 

  9. Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19(4), 790–814 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kohli, P., Kumar, M.P., Torr, P.H.S.: \(p^3\) and beyond: move making algorithms for solving higher order functions. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1645–1656 (2009)

    Article  Google Scholar 

  11. Kolmogorov, V.: What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: ICCV, pp. 564–571 (2005)

    Google Scholar 

  12. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002). doi:10.1007/3-540-47977-5_6

    Chapter  Google Scholar 

  13. Komodakis, N., Tziritas, G.: Approximate labeling via graph-cuts based on linear programming. Pattern Anal. Mach. Intell. 29, 1436–1453 (2007)

    Article  Google Scholar 

  14. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: ICCV, pp. 646–653 (2009)

    Google Scholar 

  15. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. Technical report, HCI, IWR, University Heidelberg, IWR, University Heidelberg, November 2008

    Google Scholar 

  16. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer-Verlag New York, Inc., Secaucus (2001)

    Book  MATH  Google Scholar 

  17. Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. App. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models in Computer Vision. Springer-Verlag New York, Inc., Secaucus (2005)

    MATH  Google Scholar 

  19. Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approachfor computing minimal partitions. In: CVPR, Miami, Florida (2009)

    Google Scholar 

  20. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_59

    Chapter  Google Scholar 

  21. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  22. Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17(3), 670–690 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on (hyper)trees: message-passing and linear programming approaches. IEEE Trans. Inf. Theory 51, 3697–3717 (2002)

    Article  MATH  Google Scholar 

  24. Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In: CVPR, San Francisco, USA (2010)

    Google Scholar 

  25. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_28

    Chapter  Google Scholar 

  26. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A spatially continuous max-flow and min-cut framework for binary labeling problems. Numerische Mathematik 126(3), 559–587 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vision, Modeling and Visualization Workshop (VMV) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yuan, J., Yin, K., Bai, YG., Feng, XC., Tai, XC. (2017). Bregman-Proximal Augmented Lagrangian Approach to Multiphase Image Segmentation. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics