Abstract
This article describes the application of distributed computing techniques for the analysis of big data information from Intelligent Transportation Systems. Extracting useful mobility information from large volumes of data is crucial to improve decision-making processes in smart cities. We study the problem of estimating demand and origin-destination matrices based on ticket sales and location of buses in the city. We introduce a framework for mobility analysis in smart cities, including two algorithms for the efficient processing of large mobility data from the public transportation in Montevideo, Uruguay. Parallel versions are proposed for distributed memory (e.g., cluster, grid, cloud) infrastructures and a cluster implementation is presented. The experimental analysis performed using realistic datasets demonstrate that significatively speedup values, up to 16.41, are obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bell, M.: The estimation of an origin-destination matrix from traffic counts. Transp. Sci. 17(2), 198–217 (1983)
Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M.: The promises of big data and small data for travel behavior (aka human mobility) analysis. Transp. Res. Part C: Emerg. Technol. 68, 285–299 (2016)
Cirne, W., Brasileiro, F., Sauvé, J., Andrade, N., Paranhos, D., Santos-Neto, E.: Grid computing for bag of tasks applications. In: Proceedings of the 3rd IFIP Conference on E-Commerce, E-Business and EGovernment (2003)
Deakin, M., Waer, H.: From Intelligent to Smart Cities. Taylor & Francis, Abingdon-on-Thames (2012)
Figueiredo, L., Jesus, I., Machado, J.T., Ferreira, J., de Carvalho, J.M.: Towards the development of intelligent transportation systems. Intell. Transp. Syst. 88, 1206–1211 (2001)
Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)
Grava, S.: Urban Transportation Systems. McGraw-Hill Education, New York (2002)
Huang, E., Antoniou, C., Lopes, J., Wen, Y., Ben-Akiva, M.: Accelerated on-line calibration of dynamic traffic assignment using distributed stochastic gradient approximation. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1166–1171 (2010)
Intendencia de Montevideo: Plan de movilidad urbana: hacia un sistema de movilidad accesible, democrático y eficiente (2010)
Massobrio, R., Pias, A., Vázquez, N., Nesmachnow, S.: Map-reduce for processing GPS data from public transport in Montevideo, Uruguay. In: 2nd Argentinian Symposium on Big Data (AGRANDA) (2016)
Mellegård, E.: Obtaining origin/destination-matrices from cellular network data. Master’s thesis (2011)
Munizaga, M.A., Palma, C.: Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from Santiago, Chile. Transp. Res. Part C: Emerg. Technol. 24, 9–18 (2012)
Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Rev. Asoc. Ing. Uruguay 61, 12–15 (2010)
Pelletier, M.P., Trépanier, M., Morency, C.: Smart card data use in public transit: a literature review. Transp. Res. Part C: Emerg. Technol. 19(4), 557–568 (2011)
Pemmasani, G.: dispy: distributed and parallel computing with/for Python. http://dispy.sourceforge.net/. Accessed July 2016
QGIS Development Team: QGIS Geographic Information System. Open Source Geospatial Foundation (2009). http://qgis.osgeo.org. Accessed July 2016
Sun, C.: Dynamic origin/destination estimation using true section densities. Technical report. UCB-ITS-PRR-2000-5, University of California, Berkeley
Sussman, J.: Perspectives on Intelligent Transportation Systems (ITS). Springer Science+Business Media, Berlin (2005)
Toole, J.L., Colak, S., Sturt, B., Alexander, L.P., Evsukoff, A., González, M.C.: The path most traveled: travel demand estimation using big data resources. Transp. Res. Part C: Emerg. Technol. 58(Part B), 162–177 (2015)
Trépanier, M., Tranchant, N., Chapleau, R.: Individual trip destination estimation in a transit smart card automated fare collection system. J. Intell. Transp. Syst. 11(1), 1–14 (2007)
Wang, W., Attanucci, J., Wilson, N.: Bus passenger origin-destination estimation and related analyses using automated data collection systems. J. Publ. Transp. 14(4), 131–150 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fabbiani, E., Vidal, P., Massobrio, R., Nesmachnow, S. (2017). Distributed Big Data Analysis for Mobility Estimation in Intelligent Transportation Systems. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-57972-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57971-9
Online ISBN: 978-3-319-57972-6
eBook Packages: Computer ScienceComputer Science (R0)