Distributed Big Data Analysis for Mobility Estimation in Intelligent Transportation Systems | SpringerLink
Skip to main content

Distributed Big Data Analysis for Mobility Estimation in Intelligent Transportation Systems

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 697))

Included in the following conference series:

Abstract

This article describes the application of distributed computing techniques for the analysis of big data information from Intelligent Transportation Systems. Extracting useful mobility information from large volumes of data is crucial to improve decision-making processes in smart cities. We study the problem of estimating demand and origin-destination matrices based on ticket sales and location of buses in the city. We introduce a framework for mobility analysis in smart cities, including two algorithms for the efficient processing of large mobility data from the public transportation in Montevideo, Uruguay. Parallel versions are proposed for distributed memory (e.g., cluster, grid, cloud) infrastructures and a cluster implementation is presented. The experimental analysis performed using realistic datasets demonstrate that significatively speedup values, up to 16.41, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell, M.: The estimation of an origin-destination matrix from traffic counts. Transp. Sci. 17(2), 198–217 (1983)

    Article  Google Scholar 

  2. Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M.: The promises of big data and small data for travel behavior (aka human mobility) analysis. Transp. Res. Part C: Emerg. Technol. 68, 285–299 (2016)

    Article  Google Scholar 

  3. Cirne, W., Brasileiro, F., Sauvé, J., Andrade, N., Paranhos, D., Santos-Neto, E.: Grid computing for bag of tasks applications. In: Proceedings of the 3rd IFIP Conference on E-Commerce, E-Business and EGovernment (2003)

    Google Scholar 

  4. Deakin, M., Waer, H.: From Intelligent to Smart Cities. Taylor & Francis, Abingdon-on-Thames (2012)

    Book  Google Scholar 

  5. Figueiredo, L., Jesus, I., Machado, J.T., Ferreira, J., de Carvalho, J.M.: Towards the development of intelligent transportation systems. Intell. Transp. Syst. 88, 1206–1211 (2001)

    Google Scholar 

  6. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

    MATH  Google Scholar 

  7. Grava, S.: Urban Transportation Systems. McGraw-Hill Education, New York (2002)

    MATH  Google Scholar 

  8. Huang, E., Antoniou, C., Lopes, J., Wen, Y., Ben-Akiva, M.: Accelerated on-line calibration of dynamic traffic assignment using distributed stochastic gradient approximation. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1166–1171 (2010)

    Google Scholar 

  9. Intendencia de Montevideo: Plan de movilidad urbana: hacia un sistema de movilidad accesible, democrático y eficiente (2010)

    Google Scholar 

  10. Massobrio, R., Pias, A., Vázquez, N., Nesmachnow, S.: Map-reduce for processing GPS data from public transport in Montevideo, Uruguay. In: 2nd Argentinian Symposium on Big Data (AGRANDA) (2016)

    Google Scholar 

  11. Mellegård, E.: Obtaining origin/destination-matrices from cellular network data. Master’s thesis (2011)

    Google Scholar 

  12. Munizaga, M.A., Palma, C.: Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from Santiago, Chile. Transp. Res. Part C: Emerg. Technol. 24, 9–18 (2012)

    Article  Google Scholar 

  13. Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Rev. Asoc. Ing. Uruguay 61, 12–15 (2010)

    Google Scholar 

  14. Pelletier, M.P., Trépanier, M., Morency, C.: Smart card data use in public transit: a literature review. Transp. Res. Part C: Emerg. Technol. 19(4), 557–568 (2011)

    Article  Google Scholar 

  15. Pemmasani, G.: dispy: distributed and parallel computing with/for Python. http://dispy.sourceforge.net/. Accessed July 2016

  16. QGIS Development Team: QGIS Geographic Information System. Open Source Geospatial Foundation (2009). http://qgis.osgeo.org. Accessed July 2016

  17. Sun, C.: Dynamic origin/destination estimation using true section densities. Technical report. UCB-ITS-PRR-2000-5, University of California, Berkeley

    Google Scholar 

  18. Sussman, J.: Perspectives on Intelligent Transportation Systems (ITS). Springer Science+Business Media, Berlin (2005)

    Google Scholar 

  19. Toole, J.L., Colak, S., Sturt, B., Alexander, L.P., Evsukoff, A., González, M.C.: The path most traveled: travel demand estimation using big data resources. Transp. Res. Part C: Emerg. Technol. 58(Part B), 162–177 (2015)

    Article  Google Scholar 

  20. Trépanier, M., Tranchant, N., Chapleau, R.: Individual trip destination estimation in a transit smart card automated fare collection system. J. Intell. Transp. Syst. 11(1), 1–14 (2007)

    Article  Google Scholar 

  21. Wang, W., Attanucci, J., Wilson, N.: Bus passenger origin-destination estimation and related analyses using automated data collection systems. J. Publ. Transp. 14(4), 131–150 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Massobrio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fabbiani, E., Vidal, P., Massobrio, R., Nesmachnow, S. (2017). Distributed Big Data Analysis for Mobility Estimation in Intelligent Transportation Systems. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics