Abstract
A deep network structure is formed with LSTM layer and convolutional layer interweaves with each other. The Layerwise Interweaving Convolutional LSTM (LIC-LSTM) enhanced the feature extraction ability of LSTM stack and is capable for versatile sequential data modeling. Its unique network structure allows it to extract higher level features with sequential information involved. Experiment results show the model achieves higher accuracy and shoulders lower perplexity on sequential data modeling tasks compared with state of art LSTM models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2014). http://arxiv.org/abs/1409.0473
Donahue, J., Hendricks, L.A., Rohrbach, M., Venugopalan, S., Guadarrama, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2016)
Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. CoRR abs/1508.06615 (2015). http://arxiv.org/abs/1508.06615
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. CoRR abs/1508.04025 (2015). http://arxiv.org/abs/1508.04025
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3104–3112. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
Vosoughi, S., Vijayaraghavan, P., Roy, D.: Tweet2vec: learning tweet embeddings using character-level CNN-LSTM encoder-decoder. CoRR abs/1607.07514 (2016). http://arxiv.org/abs/1607.07514
Wang, J., Yu, L.C., Lai, K.R., Zhang, X.: Dimensional sentiment analysis using a regional CNN-LSTM model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, pp. 225–230 (2016)
Ye, C., Zhao, C., Yang, Y., Fermüller, C., Aloimonos, Y.: Lightnet: a versatile, standalone matlab-based environment for deep learning. CoRR abs/1605.02766 (2016). http://arxiv.org/abs/1605.02766
Zhou, C., Sun, C., Liu, Z., Lau, F.C.M.: A C-LSTM neural network for text classification. CoRR abs/1511.08630 (2015). http://arxiv.org/abs/1511.08630
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Duan, T., Srihari, S.N. (2017). Layerwise Interweaving Convolutional LSTM. In: Mouhoub, M., Langlais, P. (eds) Advances in Artificial Intelligence. Canadian AI 2017. Lecture Notes in Computer Science(), vol 10233. Springer, Cham. https://doi.org/10.1007/978-3-319-57351-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-57351-9_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57350-2
Online ISBN: 978-3-319-57351-9
eBook Packages: Computer ScienceComputer Science (R0)