Abstract
In this paper, we discuss various models and solutions for saving data in crowdsensing applications. A mobile crowdsensing is a relatively new sensing paradigm based on the power of the crowd with the sensing capabilities of mobile devices, such as smartphones, wearable devices, cars with mobile equipment, etc. This conception (paradigm) becomes quite popular due to huge penetration of mobile devices equipped with multiple sensors. The conception enables to collect local information from individuals (they could be human persons or things) surrounding environment with the help of sensing features of the mobile devices. In our paper, we provide a review of the data persistence solutions (back-end systems, data stores, etc.) for mobile crowdsensing applications. The main goal of our research is to propose a software architecture for mobile crowdsensing in Smart City services. The deployment for such kind of applications in Russia has got some limitations due to legal restrictions also discussed in our paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Namiot, D., Sneps-Sneppe, M.: On crowd sensing back-end. In: DAMDID/RCDL 2016 Selected Papers of the XVIII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2016), CEUR Workshop Proceedings, vol. 1752, pp. 168–175 (2016)
Tanas, C., Herrera-Joancomartí, J.: Users as smart sensors: a mobile platform for sensing public transport incidents. In: Nin, J., Villatoro, D. (eds.) CitiSens 2012. LNCS (LNAI), vol. 7685, pp. 81–93. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36074-9_8
Internet of Things, Web of Data & Citizen Participation as Enablers of Smart Cities. http://www.slideshare.net/dipina/internet-of-things-web-of-data-citizen-participation-as-enablers-of-smart-cities. Accessed Jan 2017
Namiot, D., Sneps-Sneppe, M.: The physical web in smart cities. In: Advances in Wireless and Optical Communications (RTUWO 2015). IEEE Press, New York (2015)
Namiot, D., Sneps-Sneppe, M.: CAT - cars as tags. In: 2014 Proceedings of the 7th International Workshop on Communication Technologies for Vehicles (Nets4Cars-Fall). IEEE Press, New York (2014)
Massaro, E., et al.: The car as an ambient sensing platform. Proc. IEEE 105(1), 3–7 (2017)
Hu, X., Chu, T., Chan, H., Leung, V.: Vita: a crowdsensing-oriented mobile cyber-physical system. IEEE Trans. Emerg. Top. Comput. 1(1), 148–165 (2013)
Calabrese, F., Ratti, C.: Real time rome. Netw. Commun. Stud. 20(3-4), 247–258 (2006)
Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Comput. 1, 46–55 (2003)
Konidala, D.M., Deng, R.H., Li, Y., Lau, H.C., Fienberg, S.E.: Anonymous authentication of visitors for mobile crowd sensing at amusement parks. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 174–188. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38033-4_13
Ganti, R.K., Fan, Y., Hui, L.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)
Lane, N., et al.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)
Bellavista, P., et al.: Scalable and cost-effective assignment of mobile crowdsensing tasks based on profiling trends and prediction: the ParticipAct living lab experience. Sensors 15(8), 18613–18640 (2015)
Namiot, D., Sneps-Sneppe, M.: On software standards for smart cities: API or DPI. In: ITU Kaleidoscope Academic Conference: Living in a converged world-Impossible without standards? Proceedings of the 2014. IEEE Press (2014)
Yue, K., et al.: Research of embedded database SQLite application in intelligent remote monitoring system. In: 2010 International Forum on Information Technology and Applications (IFITA), vol. 2. IEEE (2010)
Namiot, D., Sneps-Sneppe, M.: On open source mobile sensing. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 82–94. Springer, Cham (2014). doi:10.1007/978-3-319-10353-2_8
Funf. http://funf.org/. Accessed Jan 2017
Bansal, S.K.: Towards a semantic extract-transform-load (ETL) framework for big data integration. In: 2014 IEEE International Congress on Big Data. IEEE Press (2014)
Namiot, D.: On big data stream processing. Int. J. Open Inf. Technol. 3(8), 48–51 (2015)
Kroß, J., Brunnert, A., Prehofer, C., Runkler, T.A., Krcmar, H.: Stream processing on demand for lambda architectures. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 243–257. Springer, Cham (2015). doi:10.1007/978-3-319-23267-6_16
Lambda architecture. http://lambda-architecture.net/. Accessed Jan 2017
Questioning the Lambda Architecture. http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.htm. Accessed Jan 2017
Gál, Z., Hunor S., Béla G.: Information flow and complex event processing of the sensor network communication. In: 2015 Proceedings of the 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). IEEE Press (2015)
Merging Batch and Stream Processing in a Post Lambda World. https://www.datanami.com/2016/06/01/merging-batch-streaming-post-lambda-world/. Accessed Jan 2017
Garg, N.: Apache Kafka. Packt Publishing Ltd, Birmingham (2013)
Maarala, A.I., et al.: Low latency analytics for streaming traffic data with Apache Spark. In: 2015 IEEE International Conference on Big Data (Big Data). IEEE Press (2015)
Kafka Streams. http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple. Accessed Jan 2017
Apache Edgent. https://edgent.apache.org/. Accessed Jan 2017
Mobile-edge computing executing brief. https://portal.etsi.org/portals/0/tbpages/mec/docs/mec%20executive%20brief%20v1%2028-09-14.pdf. Accessed Jan 2017
Sanaei, Z., et al.: Heterogeneity in mobile cloud computing: taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16(1), 369–392 (2014)
Osseiran, Afif, et al.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)
Namiot, D., Sneps-Sneppe, M.: On hyper-local web pages. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 11–18. Springer, Cham (2016). doi:10.1007/978-3-319-30843-2_2
Scalable Streaming of Video using Amazon Web Services. http://www.slideshare.net/AmazonWebServices/2013-1021scalablestreamingwebinar. Accessed Jan 2017
Selectel API (Russia). https://selectel.ru/services/cloud-storage/. Accessed Jan 2017
Apache CloudStack. https://cloudstack.apache.org/. Accessed Jan 2017
Nurmi, D., et al.: The eucalyptus open-source cloud-computing system. In: 2009 Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID 2009. IEEE Press (2009)
OpenStack. https://www.openstack.org/. Accessed Jan 2017
Wen, X., et al.: Comparison of open-source cloud management platforms: OpenStack and OpenNebula. In: 2012 Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE Press (2012)
IBM Cloud Video. https://www.ibm.com/cloud-computing/solutions/video/. Accessed Jan 2017
Smartvue. http://smartvue.com/cloud-services.html. Accessed Jan 2017
FI-WARE Cloud Hosting. https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Cloud_Hosting_Architecture. Accessed Jan 2017
Kurento – the stream-oriented generic enabler. https://www.fiware.org/2014/07/04/kurento-the-stream-oriented-generic-enabler/. Accessed Jan 2017
Gheith, A., et al.: IBM bluemix mobile cloud services. IBM J. Res. Dev. 60(2-3), 7:1 (2016)
Apache Usergrid. https://usergrid.apache.org/. Accessed Jan 2017
Rackspace Cloud Files. https://www.rackspace.com/cloud/files. Accessed Jan 2017
Namiot, D., Sneps-Sneppe, M.: On the domestic standards for Smart Cities. Int. J. Open Inf. Technol. 4(7), 32–37 (2016)
Namiot, D., Sneps-Sneppe, M.: On physical web browser. In: Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT), pp. 220–225. IEEE Press, New York (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Namiot, D., Sneps-Sneppe, M. (2017). On Data Persistence Models for Mobile Crowdsensing Applications. In: Kalinichenko, L., Kuznetsov, S., Manolopoulos, Y. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2016. Communications in Computer and Information Science, vol 706. Springer, Cham. https://doi.org/10.1007/978-3-319-57135-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-57135-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57134-8
Online ISBN: 978-3-319-57135-5
eBook Packages: Computer ScienceComputer Science (R0)