Effective Blind Source Separation Based on the Adam Algorithm | SpringerLink
Skip to main content

Effective Blind Source Separation Based on the Adam Algorithm

  • Chapter
  • First Online:
Multidisciplinary Approaches to Neural Computing

Abstract

In this paper, we derive a modified InfoMax algorithm for the solution of Blind Signal Separation (BSS) problems by using advanced stochastic methods. The proposed approach is based on a novel stochastic optimization approach known as the Adaptive Moment Estimation (Adam) algorithm. The proposed BSS solution can benefit from the excellent properties of the Adam approach. In order to derive the new learning rule, the Adam algorithm is introduced in the derivation of the cost function maximization in the standard InfoMax algorithm. The natural gradient adaptation is also considered. Finally, some experimental results show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10(3), 251–276 (1998)

    Article  Google Scholar 

  2. Araki, S., Mukai, R., Makino, S., Nishikawa, T., Saruwatari, H.: The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans. Speech Audio Process. 11(2), 109–116 (2003)

    Article  MATH  Google Scholar 

  3. Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  4. Boulmezaoud, T.Z., El Rhabi, M., Fenniri, H., Moreau, E.: On convolutive blind source separation in a noisy context and a total variation regularization. In: Proceedings of IEEE Eleventh International Workshop on Signal Processing Advances in Wireless Communications (SPAWC2010), pp. 1–5. Marrakech (20–23 June 2010)

    Google Scholar 

  5. Choi, S., Cichocki, A., Park, H.M., Lee, S.Y.: Blind source separation and independent component analysis: a review. Neural Inf. Process. Lett. Rev. 6(1), 1–57 (2005)

    Google Scholar 

  6. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. Wiley (2002)

    Google Scholar 

  7. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation. Springer (2010)

    Google Scholar 

  8. Douglas, S.C., Gupta, M.: Scaled natural gradient algorithm for instantaneous and convolutive blind source separation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2007), vol. 2, pp. 637–640 (2007)

    Google Scholar 

  9. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Haykin, S. (ed.): Unsupervised Adaptive Filtering, vol. 2: Blind Source Separation. Wiley (2000)

    Google Scholar 

  11. Inuso, G., La Foresta, F., Mammone, N., Morabito, F.C.: Wavelet-ICA methodology for efficient artifact removal from electroencephalographic recordings. In: Proceedings of International Joint Conference on Neural Networks (IJCNN2007)

    Google Scholar 

  12. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR2015), pp. 1–13 (2015). arXiv:1412.6980

  13. Liu, J.Q., Feng, D.Z., Zhang, W.W.: Adaptive improved natural gradient algorithm for blind source separation. Neural Comput. 21(3), 872–889 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill (1991)

    Google Scholar 

  15. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. In: International Conference on Learning Representations (April 2014)

    Google Scholar 

  16. Scarpiniti, M., Vigliano, D., Parisi, R., Uncini, A.: Generalized splitting functions for blind separation of complex signals. Neurocomputing 71(10–12), 2245–2270 (2008)

    Article  Google Scholar 

  17. Smaragdis, P.: Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22(21–34) (1998)

    Google Scholar 

  18. Thomas, P., Allen, G., August, N.: Step-size control in blind source separation. In: International Workshop on Independent Component Analysis and Blind Source Separation, pp. 509–514 (2000)

    Google Scholar 

  19. Tieleman, T., Hinton, G.: Lecture 6.5—RMSProp. Technical report, COURSERA: Neural Networks for Machine Learning (2012)

    Google Scholar 

  20. Vigliano, D., Scarpiniti, M., Parisi, R., Uncini, A.: Flexible nonlinear blind signal separation in the complex domain. Int. J. Neural Syst. 18(2), 105–122 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Scarpiniti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Scarpiniti, M., Scardapane, S., Comminiello, D., Parisi, R., Uncini, A. (2018). Effective Blind Source Separation Based on the Adam Algorithm. In: Esposito, A., Faudez-Zanuy, M., Morabito, F., Pasero, E. (eds) Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-56904-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56904-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56903-1

  • Online ISBN: 978-3-319-56904-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics