Abstract
In this paper, we derive a modified InfoMax algorithm for the solution of Blind Signal Separation (BSS) problems by using advanced stochastic methods. The proposed approach is based on a novel stochastic optimization approach known as the Adaptive Moment Estimation (Adam) algorithm. The proposed BSS solution can benefit from the excellent properties of the Adam approach. In order to derive the new learning rule, the Adam algorithm is introduced in the derivation of the cost function maximization in the standard InfoMax algorithm. The natural gradient adaptation is also considered. Finally, some experimental results show the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10(3), 251–276 (1998)
Araki, S., Mukai, R., Makino, S., Nishikawa, T., Saruwatari, H.: The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans. Speech Audio Process. 11(2), 109–116 (2003)
Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)
Boulmezaoud, T.Z., El Rhabi, M., Fenniri, H., Moreau, E.: On convolutive blind source separation in a noisy context and a total variation regularization. In: Proceedings of IEEE Eleventh International Workshop on Signal Processing Advances in Wireless Communications (SPAWC2010), pp. 1–5. Marrakech (20–23 June 2010)
Choi, S., Cichocki, A., Park, H.M., Lee, S.Y.: Blind source separation and independent component analysis: a review. Neural Inf. Process. Lett. Rev. 6(1), 1–57 (2005)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. Wiley (2002)
Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation. Springer (2010)
Douglas, S.C., Gupta, M.: Scaled natural gradient algorithm for instantaneous and convolutive blind source separation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2007), vol. 2, pp. 637–640 (2007)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)
Haykin, S. (ed.): Unsupervised Adaptive Filtering, vol. 2: Blind Source Separation. Wiley (2000)
Inuso, G., La Foresta, F., Mammone, N., Morabito, F.C.: Wavelet-ICA methodology for efficient artifact removal from electroencephalographic recordings. In: Proceedings of International Joint Conference on Neural Networks (IJCNN2007)
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR2015), pp. 1–13 (2015). arXiv:1412.6980
Liu, J.Q., Feng, D.Z., Zhang, W.W.: Adaptive improved natural gradient algorithm for blind source separation. Neural Comput. 21(3), 872–889 (2009)
Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill (1991)
Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. In: International Conference on Learning Representations (April 2014)
Scarpiniti, M., Vigliano, D., Parisi, R., Uncini, A.: Generalized splitting functions for blind separation of complex signals. Neurocomputing 71(10–12), 2245–2270 (2008)
Smaragdis, P.: Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22(21–34) (1998)
Thomas, P., Allen, G., August, N.: Step-size control in blind source separation. In: International Workshop on Independent Component Analysis and Blind Source Separation, pp. 509–514 (2000)
Tieleman, T., Hinton, G.: Lecture 6.5—RMSProp. Technical report, COURSERA: Neural Networks for Machine Learning (2012)
Vigliano, D., Scarpiniti, M., Parisi, R., Uncini, A.: Flexible nonlinear blind signal separation in the complex domain. Int. J. Neural Syst. 18(2), 105–122 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Scarpiniti, M., Scardapane, S., Comminiello, D., Parisi, R., Uncini, A. (2018). Effective Blind Source Separation Based on the Adam Algorithm. In: Esposito, A., Faudez-Zanuy, M., Morabito, F., Pasero, E. (eds) Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-56904-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-56904-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56903-1
Online ISBN: 978-3-319-56904-8
eBook Packages: EngineeringEngineering (R0)