Rule Base Reduction Using Conflicting and Reinforcement Measures | SpringerLink
Skip to main content

Rule Base Reduction Using Conflicting and Reinforcement Measures

  • Chapter
  • First Online:
Multidisciplinary Approaches to Neural Computing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 69))

  • 1431 Accesses

Abstract

In this paper we present an innovative procedure to reduce the number of rules in a Mamdani rule-based fuzzy systems. First of all, we extend the similarity measure or degree between antecedent and consequent of two rules. Subsequently, we use the similarity degree to compute two new measures of conflicting and reinforcement between fuzzy rules. We apply these conflicting and reinforcement measures to suitably reduce the number of rules. Namely, we merge two rules together if they are redundant, i.e. if both antecedent and consequence are similar together, repeating this operation until no similar rules exist, obtaining a reduced set of rules. Again, we remove from the reduced set the rule with conflict with other, i.e. if antecedent are similar and consequence not; among the two, we remove the one characterized by higher average conflict with all the rules in the reduced set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A triangular fuzzy number is a sub-case of a trapezoidal one, with \(a_2=a_3\), while a bell-shape recalls a gaussian distribution.

  2. 2.

    Alternatively, in [9] the following merging procedure is proposed: if \(A=(a_1,a_2,a_3,a_4)\) and \(B=(b_1,b_2,b_3,b_4)\) are trapezoidal fuzzy numbers, the merged (trapezoidal) fuzzy number \(C=(c_1,c_2,c_3,c_4)\) is obtained by \(c_1=\min (a_1,b_1)\), \(c_2=\lambda _{2} a_2+(1-\lambda _{2}) b_2\), \(c_3=\lambda _{3} a_3+(1-\lambda _{3}) b_3\), \(c_4=\max (a_4,b_4)\), where \(\lambda _{2},\lambda _{3}\in [0,1]\).

References

  1. Simon, D.: Design and rule base reduction of a fuzzy filter for the estimation of motor currents. Int. J. Approximate Reasoning 25(2), 145–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lazzerini, B., Marcelloni, F.: Reducing computation overhead in miso fuzzy systems. Fuzzy Sets Syst. 113(3), 485–496 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellaaj, H., Ketata, R., Chtourou, M.: A new method for fuzzy rule base reduction. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 25(3), 605–613 (2013)

    Google Scholar 

  4. Tsekouras, G.E.: Fuzzy rule base simplification using multidimensional scaling and constrained optimization. Fuzzy Sets Syst. (2016) (to appear)

    Google Scholar 

  5. Baranyi, P., Kóczy, L.T., Gedeon, T.T.D.: A generalized concept for fuzzy rule interpolation. Fuzzy Syst. IEEE Trans. 12(6), 820–837 (2004)

    Google Scholar 

  6. Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.-F.: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets Syst. 149(1), 149–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nefti, S., Oussalah, M., Kaymak, U.: A new fuzzy set merging technique using inclusion-based fuzzy clustering. Fuzzy Syst. IEEE Trans. 16(1), 145–161 (2008)

    Article  Google Scholar 

  8. Riid, A., Rüstern, E.: Adaptability, interpretability and rule weights in fuzzy rule-based systems. Inf. Sci. 257, 301–312 (2014)

    Article  MATH  Google Scholar 

  9. Setnes, M., Babuška, R., Kaymak, U., van Nauta Lemke, H.R.: Similarity measures in fuzzy rule base simplification. Syst. Man Cybern. Part B Cybern. IEEE Trans. 28(3), 376–386 (1998)

    Google Scholar 

  10. Chen, M.-Y., Linkens, D.A.: Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets Syst. 142, 243–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, Y.: Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. Fuzzy Syst. IEEE Trans. 8(2), 212–221 (2000)

    Article  Google Scholar 

  12. Chao, C.-T., Chen, Y.-J., Teng, C.-C.: Simplification of fuzzy-neural systems using similarity analysis. Syst. Man Cybern. Part B Cybern. IEEE Trans. 26(2), 344–354 (1996)

    Article  Google Scholar 

  13. Babuška, R., Setnes, M., Kaymak, U., van Nauta Lemke, H.R.: Rule base simplification with similarity measures. In: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, 1996, vol. 3, pp. 1642–1647. IEEE (1996)

    Google Scholar 

  14. Jin, Y., Von Seelen, W., Sendhoff, B.: On generating FC3 fuzzy rule systems from data using evolution strategies. Syst. Man Cybern. Part B Cybern. IEEE Trans. 29(6), 829–845 (1999)

    Article  Google Scholar 

  15. Dubois, D., Prade, H.: Fuzzy sets and systems: theory and applications, vol. 144. Academic Press (1980)

    Google Scholar 

  16. Nauck, D., Kruse, R.: How the learning of rule weights affects the interpretability of fuzzy systems. In: Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, vol. 2, pp. 1235–1240. IEEE (1998)

    Google Scholar 

  17. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)

    Google Scholar 

  18. Wang, W.-J.: New similarity measures on fuzzy sets and on elements. Fuzzy Sets Syst. 85(3), 305–309 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johanyák, Z.C., Kovács, S.: Distance based similarity measures of fuzzy sets. In: Proceedings of SAMI, vol. 2005 (2005)

    Google Scholar 

  20. Beg, I., Ashraf, S.: Similarity measures for fuzzy sets. Appl. Comput. Math 8(2), 192–202 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Deng, G., Jiang, Y., Fu, J.: Monotonic similarity measures between fuzzy sets and their relationship with entropy and inclusion measure. Fuzzy Sets and Syst. (2015)

    Google Scholar 

  22. Zwick, R., Carlstein, E., Budescu, D.V.: Measures of similarity among fuzzy concepts: a comparative analysis. Int. J. Approximate Reasoning 1(2), 221–242 (1987)

    Google Scholar 

  23. Couso, I., Garrido, L., Sánchez, L.: Similarity and dissimilarity measures between fuzzy sets: A formal relational study. Inf. Sci. 229, 122–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions: means. Inf. Sci. 181(1), 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Delgado, M., Vila, M.A., Voxman, W.: On a canonical representation of fuzzy numbers. Fuzzy Sets Syst. 93(1), 125–135 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Facchinetti, G.: Ranking functions induced by weighted average of fuzzy numbers. Fuzzy Optim. Decis. Making 1(3), 313–327 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Anzilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Anzilli, L., Giove, S. (2018). Rule Base Reduction Using Conflicting and Reinforcement Measures. In: Esposito, A., Faudez-Zanuy, M., Morabito, F., Pasero, E. (eds) Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-56904-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56904-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56903-1

  • Online ISBN: 978-3-319-56904-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics