Abstract
There is considerable interest among both researchers and the mass public in understanding the topics of discussion on social media as they occur over time. Scholars have thoroughly analysed sampling-based topic modelling approaches for various text corpora including social media; however, another LDA topic modelling implementation—Variational Bayesian (VB)—has not been well studied, despite its known efficiency and its adaptability to the volume and dynamics of social media data. In this paper, we examine the performance of the VB-based topic modelling approach for producing coherent topics, and further, we extend the VB approach by proposing a novel time-sensitive Variational Bayesian implementation, denoted as TVB. Our newly proposed TVB approach incorporates time so as to increase the quality of the generated topics. Using a Twitter dataset covering 8 events, our empirical results show that the coherence of the topics in our TVB model is improved by the integration of time. In particular, through a user study, we find that our TVB approach generates less mixed topics than state-of-the-art topic modelling approaches. Moreover, our proposed TVB approach can more accurately estimate topical trends, making it particularly suitable to assist end-users in tracking emerging topics on social media.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A mixed topic contains keywords pertaining to multiple different topic themes.
- 2.
Considering that the number of topics is 10, the top 2 and 7 most coherent topics are reasonable choices for a comprehensive coherence evaluation.
- 3.
3 mutual words in the top 10 words is a reasonable minimum number to indicate a similar topic.
- 4.
p-values (\(\text {p}<0.05\)) are calculated by the t-test using 10 models of each two approaches.
References
Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20161-5_34
Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving LDA topic models for microblogs via tweet pooling and automatic labeling. In: Proceedings of the SIGIR (2013)
Fang, A., Ounis, I., Habel, P., Macdonald, C., Limsopatham, N.: Topic-centric classification of Twitter user’s political orientation. In: Proceedings of the SIGIR (2015)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Nat. Acad. Sci. 101, 5228–5235 (2004)
Blei, D.M., Jordan, M.I.: Variational methods for the Dirichlet process. In: Proceedings of the ICML (2004)
Wang, X., McCallum, A.: Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of SIGKDD (2006)
Hong, L., Dom, B., Gurumurthy, S., Tsioutsiouliklis, K.: A time-dependent topic model for multiple text streams. In: Proceedings of the SIGKDD (2011)
Cheng, X., Yan, X., Lan, Y., Guo, J.: BTM: topic modeling over short texts. In: Proceedings of the TKDE (2014)
Yan, X., Guo, J., Lan, Y., Xu, J., Cheng, X.: A probabilistic model for bursty topic discovery in microblogs. In: Proceedings of the AAAI (2015)
Weng, J., Lim, E.P., Jiang, J., He, Q.: TwitterRank: finding topic-sensitive influential twitterers. In: Proceedings of the ICWSM (2010)
Braun, M., McAuliffe, J.: Variational inference for large-scale models of discrete choice. J. Am. Stat. Assoc. 105, 324–335 (2010)
Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the ICML (2006)
Guolo, A., Varin, C., et al.: Beta regression for time series analysis of bounded data. Ann. Appl. Stat. 8, 74–88 (2014)
Asuncion, A., Welling, M., Smyth, P., Teh, Y.W.: On smoothing and inference for topic models. In: Proceedings of the CUAI, pp. 27–34 (2009)
Sridhar, V.K.R.: Unsupervised topic modeling for short texts using distributed representations of words. In: Proceedings of the NAACL-HLT (2015)
Nguyen, D.Q., Billingsley, R., Du, L., Johnson, M.: Improving topic models with latent feature word representations. In: Proceedings of the TACL (2015)
Li, C., Wang, H., Zhang, Z., Sun, A., Ma, Z.: Topic modeling for short texts with auxiliary word embeddings. In: Proceedings of the SIGIR (2016)
Wang, C., Blei, D., Heckerman, D.: Continuous time dynamic topic models. In: Proceeding of the CUAI (2008)
Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent Dirichlet allocation. In: Proceedings of the NIPS (2010)
Johnson, N.L., Kotz, S., Balakrishnan, N.: Beta distributions. In: Continuous Univariate Distributions, vol. 2 (1995)
Fang, A., Macdonald, C., Ounis, I., Habel, P.: Topics in tweets: a user study of topic coherence metrics for Twitter data. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 492–504. Springer, Cham (2016). doi:10.1007/978-3-319-30671-1_36
Fang, A., Macdonald, C., Ounis, I., Habel, P.: Using word embedding to evaluate the coherence of topics from twitter data. In: Proceedings of the SIGIR (2016)
Fang, A., Macdonald, C., Ounis, I., Habel, P.: Examining the coherence of the top ranked tweet topics. In: Proceedings of the SIGIR (2016)
AlSumait, L., Barbará, D., Gentle, J., Domeniconi, C.: Topic significance ranking of LDA generative models. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5781, pp. 67–82. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04180-8_22
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fang, A., Macdonald, C., Ounis, I., Habel, P., Yang, X. (2017). Exploring Time-Sensitive Variational Bayesian Inference LDA for Social Media Data. In: Jose, J., et al. Advances in Information Retrieval. ECIR 2017. Lecture Notes in Computer Science(), vol 10193. Springer, Cham. https://doi.org/10.1007/978-3-319-56608-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-56608-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56607-8
Online ISBN: 978-3-319-56608-5
eBook Packages: Computer ScienceComputer Science (R0)