On the Ability to Reconstruct Ancestral Genomes from Mycobacterium Genus | SpringerLink
Skip to main content

On the Ability to Reconstruct Ancestral Genomes from Mycobacterium Genus

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Included in the following conference series:

Abstract

Technical signs of progress during the last decades has led to a situation in which the accumulation of genome sequence data is increasingly fast and cheap. The huge amount of molecular data available nowadays can help addressing new and essential questions in Evolution. However, reconstructing evolution of DNA sequences requires models, algorithms, statistical and computational methods of ever increasing complexity. Since most dramatic genomic changes are caused by genome rearrangements (gene duplications, gain/loss events), it becomes crucial to understand their mechanisms and reconstruct ancestors of the given genomes. This problem is known to be NP-complete even in the “simplest” case of three genomes. Heuristic algorithms are usually executed to provide approximations of the exact solution. We state that, even if the ancestral reconstruction problem is NP-hard in theory, its exact resolution is feasible in various situations, encompassing organelles and some bacteria. Such accurate reconstruction, which identifies too some highly homoplasic mutations whose ancestral status is undecidable, will be initiated in this work-in-progress, to reconstruct ancestral genomes of two Mycobacterium pathogenetic bacterias. By mixing automatic reconstruction of obvious situations with human interventions on signaled problematic cases, we will indicate that it should be possible to achieve a concrete, complete, and really accurate reconstruction of lineages of the Mycobacterium tuberculosis complex. Thus, it is possible to investigate how these genomes have evolved from their last common ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ftp://ftp.ncbi.nih.gov/genomes.

References

  1. Smith, N.H., Gordon, S.V., de la Rua-Domenech, R., Clifton-Hadley, R.S., Hewinson, R.G.: Bottlenecks and broomsticks: the molecular evolution of mycobacterium bovis. Nat. Rev. Microbiol. 4(9), 670–681 (2006)

    Article  Google Scholar 

  2. Shamputa, I.C., SangNae, C., Lebron, J., Via, L.E.: Introduction and epidemiology of mycobacterium tuberculosis complex in humans. In: Mukundan, H., Chambers, M.A., Waters, W.R., Larsen, M.H. (eds.) Tuberculosis, Leprosy and Mycobacterial Diseases of Man and Animals: The Many Hosts of Mycobacteria, pp. 1–16. CABI (2015). http://www.cabi.org/cabebooks/ebook/20153322769

  3. Brosch, R., Gordon, S.V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., Garnier, T., Gutierrez, C., Hewinson, G., Kremer, K., et al.: A new evolutionary scenario for the mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. 99(6), 3684–3689 (2002)

    Article  Google Scholar 

  4. Gutacker, M.M., Smoot, J.C., Migliaccio, C.A.L., Ricklefs, S.M., Hua, S., Cousins, D.V., Graviss, E.A., Shashkina, E., Kreiswirth, B.N., Musser, J.M.: Genome-wide analysis of synonymous single nucleotide polymorphisms in mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 162(4), 1533–1543 (2002)

    Google Scholar 

  5. Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A., Behr, M.A.: Genomic deletions suggest a phylogeny for the mycobacterium tuberculosis complex. J. Infect. Dis. 186(1), 74–80 (2002)

    Article  Google Scholar 

  6. Yamada-Noda, M., Ohkusu, K., Hata, H., Shah, M.M., Nhung, P.H., Sun, X.S., Hayashi, M., Ezaki, T.: Mycobacterium species identification-a new approach via dnaJ gene sequencing. Syst. Appl. Microbiol. 30(6), 453–462 (2007)

    Article  Google Scholar 

  7. Fabre, M., Hauck, Y., Soler, C., Koeck, J.-L., Van Ingen, J., Van Soolingen, D., Vergnaud, G., Pourcel, C.: Molecular characteristics of mycobacterium canettii the smooth mycobacterium tuberculosis bacilli. Infect. Genet. Evol. 10(8), 1165–1173 (2010)

    Article  Google Scholar 

  8. Fleischmann, R.D., Alland, D., Eisen, J.A., Carpenter, L., White, O., Peterson, J., DeBoy, R., Dodson, R., Gwinn, M., Haft, D., et al.: Whole-genome comparison of mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184(19), 5479–5490 (2002)

    Article  Google Scholar 

  9. Wirth, T., Hildebrand, F., Allix-Béguec, C., Wölbeling, F., Kubica, T., Kremer, K., van Soolingen, D., Rüsch-Gerdes, S., Locht, C., Brisse, S., et al.: Origin, spread and demography of the mycobacterium tuberculosis complex. PLoS Pathog 4(9), e1000160 (2008)

    Article  Google Scholar 

  10. Lang, G.I., Murray, A.W.: Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae. Genetics 178(1), 67–82 (2008)

    Article  Google Scholar 

  11. Fertin, G.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  12. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: DUPCAR: reconstructing contiguous ancestral regions with duplications. J. Comput. Biol. 15(8), 1007–1027 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gagnon, Y., Blanchette, M., El-Mabrouk, N.: A flexible ancestral genome reconstruction method based on gapped adjacencies. BMC Bioinform. 13(Suppl 19), S4 (2012)

    Google Scholar 

  14. Jones, B.R., Rajaraman, A., Tannier, E., Chauve, C.: ANGES: reconstructing ancestral genomes maps. Bioinformatics 28(18), 2388–2390 (2012)

    Article  Google Scholar 

  15. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16(12), 1557–1565 (2006)

    Article  Google Scholar 

  16. Fei, H., Zhou, J., Zhou, L., Tang, J.: Probabilistic reconstruction of ancestral gene orders with insertions and deletions. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(4), 667–672 (2014)

    Article  Google Scholar 

  17. Blanchette, M., Diallo, A.B., Green, E.D., Miller, W., Haussler, D.: Computational reconstruction of ancestral DNA sequences. In: Murphy, W.J. (ed.) Phylogenomics, pp. 171–184. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Rascol, V.L., Pontarotti, P., Levasseur, A.: Ancestral animal genomes reconstruction. Curr. Opin. Immunol. 19(5), 542–546 (2007)

    Article  Google Scholar 

  19. Larget, B., Simon, D.L., Kadane, J.B., Sweet, D.: A Bayesian analysis of metazoan mitochondrial genome arrangements. Mol. Biol. Evol. 22(3), 486–495 (2005)

    Article  Google Scholar 

  20. Hannenhalli, S., Chappey, C., Koonin, E.V., Pevzner, P.A.: Genome sequence comparison and scenarios for gene rearrangements: a test case. Genomics 30(2), 299–311 (1995)

    Article  Google Scholar 

  21. Stamatakis, A.: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312–1313 (2014)

    Article  Google Scholar 

  22. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Chieh-Hsi, W., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J.: BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537 (2014)

    Article  Google Scholar 

  23. Yang, Z.: Phylogenetic analysis by maximum likelihood (PAML) (2000)

    Google Scholar 

  24. Paradis, E., Claude, J., Strimmer, K.: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2), 289–290 (2004)

    Article  Google Scholar 

  25. Bouchard-Côté, A., Jordan, M.I.: Evolutionary inference via the Poisson Indel Process. Proc. Natl. Acad. Sci. 110(4), 1160–1166 (2013)

    Article  Google Scholar 

  26. Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion problem. J. Theoret. Biol. 99(1), 1–7 (1982)

    Article  Google Scholar 

  27. Even, S., Goldreich, O.: The minimum-length generator sequence problem is NP-hard. J. Algorithms 2(3), 311–313 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stoebe, B., Martin, W., Kowallik, K.V.: Distribution and nomenclature of protein-coding genes in 12 sequenced chloroplast genomes. Plant Mol. Biol. Reporter 16(3), 243–255 (1998)

    Article  Google Scholar 

  29. Grzebyk, D., Schofield, O., Vetriani, C., Falkowski, P.G.: The mesozoic radiation of eukaryotic algae: the portable plastid hypothesis1. J. Phycol. 39(2), 259–267 (2003)

    Article  Google Scholar 

  30. Sharon, I., Alperovitch, A., Rohwer, F., Haynes, M., Glaser, F., Atamna-Ismaeel, N., Pinter, R.Y., Partensky, F., Koonin, E.V., Wolf, Y.I., et al.: Photosystem I gene cassettes are present in marine virus genomes. Nature 461(7261), 258–262 (2009)

    Article  Google Scholar 

  31. De Chiara, M., Hood, D., Muzzi, A., Pickard, D.J., Perkins, T., Pizza, M., Dougan, G., Rino Rappuoli, E., Moxon, R., Soriani, M., et al.: Genome sequencing of disease and carriage isolates of nontypeable haemophilus influenzae identifies discrete population structure. Proc. Natl. Acad. Sci. 111(14), 5439–5444 (2014)

    Article  Google Scholar 

  32. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome Biol. 5(2), 1 (2004)

    Article  Google Scholar 

  33. Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S., Bidet, P., Bingen, E., Bonacorsi, S., Bouchier, C., Bouvet, O., et al.: Organised genome dynamics in the escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5(1), e1000344 (2009)

    Article  Google Scholar 

  34. Boissy, R., Ahmed, A., Janto, B., Earl, J., Hall, B.G., Hogg, J.S., Pusch, G.D., Hiller, L.N., Powell, E., Hayes, J., et al.: Comparative supragenomic analyses among the pathogens staphylococcus aureus, streptococcus pneumoniae, and haemophilus influenzae using a modification of the finite supragenome model. BMC Genom. 12(1), 1 (2011)

    Article  Google Scholar 

  35. Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., Angiuoli, S.V., Crabtree, J., Jones, A.L., Durkin, A.S., et al.: Genome analysis of multiple pathogenic isolates of streptococcus agalactiae: implications for the microbial pan-genome. In: Proceedings of the National Academy of Sciences of the United States of America 102(39), pp. 13950–13955 (2005)

    Google Scholar 

  36. Valot, B., Guyeux, C., Rolland, J.Y., Mazouzi, K., Bertrand, X., Hocquet, D.: What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS One 10(5), e0126468 (2015)

    Article  Google Scholar 

  37. Yang, J., Li, J., Dong, L., Grünewald, S.: Analysis on the reconstruction accuracy of the fitch method for inferring ancestral states. BMC Bioinform. 12(1), 18 (2011)

    Article  Google Scholar 

  38. Wang, Y., Sadreyev, R.I., Grishin, N.V.: PROCAIN server for remote protein sequence similarity search. Bioinformatics 25(16), 2076–2077 (2009)

    Article  Google Scholar 

  39. Kemena, C., Notredame, C.: Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics 25(19), 2455–2465 (2009)

    Article  Google Scholar 

  40. Warnow, T.: Large-scale multiple sequence alignment and phylogeny estimation. In: Chauve, C., El-Mabrouk, N., Tannier, E. (eds.) Models and Algorithms for Genome Evolution, pp. 85–146. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  41. R Development Core Team: R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria (2014)

    Google Scholar 

  42. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5(10), 1 (2004)

    Article  Google Scholar 

  43. Wright, E.S.: The art of multiple sequence alignment in R (2014)

    Google Scholar 

  44. Alkindy, B., Guyeux, C., Couchot, J.-F., Salomon, M., Bahi, J.: Using genetic algorithm for optimizing phylogenetic tree inference in plant species. In: MCEB15, Mathematical and Computational Evolutionary Biology, Porquerolles Island, France, June 2015

    Google Scholar 

  45. Alkindy, B., Al-Nuaimi, B., Guyeux, C., Couchot, J.-F., Salomon, M., Alsrraj, R., Philippe, L.: Binary particle swarm optimization versus hybrid genetic algorithm for inferring well supported phylogenetic trees. In: Angelini, C., Rancoita, P.M.V., Rovetta, S. (eds.) CIBB 2015. LNCS, vol. 9874, pp. 165–179. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44332-4_13

    Chapter  Google Scholar 

  46. AlKindy, B., Guyeux, C., Couchot, J.-F., Salomon, M., Parisod, C., Bahi, J.M.: Hybrid genetic algorithm and lasso test approach for inferring well supported phylogenetic trees based on subsets of chloroplastic core genes. In: Dediu, A.-H., Hernández-Quiroz, F., Martín-Vide, C., Rosenblueth, D.A. (eds.) AlCoB 2015. LNCS, vol. 9199, pp. 83–96. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21233-3_7

    Chapter  Google Scholar 

  47. Pearl, J.: Reverend bayes on inference engines: a distributed hierarchical approach. In: AAAI, pp. 133–136 (1982)

    Google Scholar 

  48. Hubisz, M.J., Pollard, K.S., Siepel, A.: PHAST and RPHAST: phylogenetic analysis with space/time models. Briefings Bioinform. 12(1), 41–51 (2011). doi:10.1093/bib/bbq072

    Article  Google Scholar 

  49. Behr, M.A.: Evolution of mycobacterium tuberculosis. In: Divangahi, M. (ed.) The New Paradigm of Immunity to Tuberculosis, vol. 783, pp. 81–91. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  50. Siguier, P., Filée, J., Chandler, M.: Insertion sequences in prokaryotic genomes. Curr. Opin. Microbiol. 9(5), 526–531 (2006)

    Article  Google Scholar 

  51. Bergman, C.M., Quesneville, H.: Discovering and detecting transposable elements in genome sequences. Briefings Bioinform. 8(6), 382–392 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Computations presented in this article were realised on the supercomputing facilities provided by the Mésocentre de calcul de Franche-Comté.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashar Al-Nuaimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Guyeux, C., Al-Nuaimi, B., AlKindy, B., Couchot, JF., Salomon, M. (2017). On the Ability to Reconstruct Ancestral Genomes from Mycobacterium Genus. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics