Abstract
This paper describes a Genetic Algorithm (GA) software system for automatically generating Mondrian-style symmetries and abstract artwork. The research examines Mondrian’s paintings from 1922 through 1932 and analyses the balances, color symmetries and composition in these paintings. We used a set of eleven criteria to define the automated system. We then translated and formulized these criteria into heuristics and criteria that can be measured and used in the GA algorithm. The software includes a module that provides a range of GA parameter values for interactive selection. Despite a number of limitations, the method yielded high quality results with colors close to those of Mondrian and rectangles that did not overlap and fit the canvas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Milner, J.: Mondrian. Phaidon Press, New York (2011)
Seuphor, M.: Piet Mondrian: Life and Work. Harry N. Abrams Inc, New York (1957)
Henning, E.B.: A classic painting by Piet Mondrian. Bull. Clevel. Museum Art 55(8), 243–249 (1968)
Hill, A.: Art and mathesis: Mondrian’s structures. Leonardo 1(3), 233–242 (1968)
Taylor, R.: Pollock, Mondrian and nature: recent scientific investigations. Chaos Complex. Lett. 1(3), 265–277 (2003)
Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Berlin Heidelberg (2008)
Locher, P.J.: The usefulness of eye movement recordings to subject an aesthetic episode with visual art to empirical scrutiny. Psychol. Sci. 48(2), 106–114 (2006)
McManus, I.C., Cheema, B., Stoker, J.: The aesthetics of composition: a study of Mondrian. Empirical Stud. Arts 11, 83–94 (1993)
Latto, R., Brain, D., Kelly, B.: An oblique effect in aesthetics: Homage to Mondrian (1872–1944). Perception 29(8), 981–987 (2000)
Noll, A.M.: Human or Machine: a subjective comparison of Piet Mondrian’s “composition with Lines” (1917) and a computer-generated picture. Psychol. Record 16, 1–10 (1966)
Schufreider, G.: Overpowering the center: three compositions by Mondrian. J. Aesthetics Art Criticism 44(1), 13–28 (1985)
Vaughan, W.: The Mondrian Maker. Supplement to Computers and Art History Group, First Issue (1985)
Michelson, A.: De Stijl, Its Other Face: Abstraction and Cacophony, or What Was the Matter with Hegel? (1982). Retrieved http://www.jstor.org/stable/778361
Blotkamp, C.: Mondrian: The Art of Destruction. Reaktion Books, London (1994)
Bois, Y.A., Joosten, J., Rudenstine, A.Z., Janssen, H.: Piet Mondrian 1872–1944. Leonardo Arte, Milan (1994)
Overy, P.: Here-I-Am-Again-Piet: a Mondrian for the Nineties. Art Hist. 18(4), 584–595 (1995)
Zhang, K., Yu, J.: Generation of kandinsky art. Leonardo 49(1), 48–54 (2016)
Eiben, E.: Evolutionary reproduction of Dutch masters: the Mondrian and Escher evolvers. In: Juan Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series, pp. 211–224. Springer, Heidelberg (2008)
de Silva Garza, A.G., Lores, A.Z.: A cognitive evaluation of a computer system for generating Mondrian-like artwork. In: Gero, J.S. (ed.) Design Computing and Cognition ’04, pp. 79–96. Kluwer Academic Publishers, Worcester, Massachusetts (2004)
Bentley, P., Corne, D.W. (eds.): Creative Evolutionary Systems. Morgan Kaufmann Publishers, San Francisco (2002)
Di Paola, S., Gabora, L.: Incorporating characteristics of human creativity into an evolutionary art algorithm. Genet. Program Evolvable Mach. 10(2), 97–110 (2009). doi:10.1007/s10710-008-9074-x
Fogelman, M. (2011) http://fogleman.tumblr.com/post/11959143268/procedurally-generating-images-in-the-style-of
Machado, P., Correia, J.: Semantic aware methods for evolutionary art. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 301–308. ACM, New York (2014). doi:http://dx.doi.org/10.1145/2576768.2598293
Heijer, E., Eiben, A.E.: Evolving pop art using scalable vector graphics. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 48–59. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29142-5_5
Bergen, S.R.: Evolving stylized images using a user-interactive genetic algorithm. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009, New York, NY, USA, ACM, pp. 2745–2752 (2009)
Cook, T.E.: GAUGUIN: generating art using genetic algorithms and user input naturally. In: Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, London, United Kingdom (2007)
Silva Garza, A.G., Lores, A.Z.: Case-based art. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 237–251. Springer, Heidelberg (2005). doi:10.1007/11536406_20
Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1991), Vol. 25, No. 4, pp. 319–328 (1991)
Romero, J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2007)
Trist, K., Ciesielski, V., Barile, P.: Can’t see the forest: using an evolutionary algorithm to produce an animated artwork. In: Huang, F., Wang, R.-C. (eds.) ArtsIT 2009. LNICSSITE, vol. 30, pp. 255–262. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11577-6_32
Liu, H., Liu, X.: generative art images by complex functions based genetic algorithm. In: León-Rovira, N. (ed.) CAI 2007. ITIFIP, vol. 250, pp. 125–134. Springer, Heidelberg (2007). doi:10.1007/978-0-387-75456-7_13
den Heijer, E., Eiben, A.E.: Using aesthetic measures to evolve art. In: IEEE Congress on Evolutionary Computation, pp. 311–320. IEEE Press (2010)
Johnson, M.G., Muday, J.A., Schirillo, J.A.: When viewing variations in paintings by mondrian, aesthetic preferences correlate with pupil size. Psychol. Aesthetics Creativity Arts 4(3), 161–167 (2010). doi:10.1037/a0018155
Simon, D.: Evolutionary Optimization Algorithms. Wiley, Hoboken (2013)
Heijer, E.: Evolving glitch art. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 109–120. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36955-1_10
Goldberg, D.E., Kalyanmoy, D.: A comparative analysis of selection schemes used in genetic algorithms. Found. Genet. Algorithms 1, 69–93 (1991)
Chuang, Y.-C., Chen, C.-T., Hwang, C.: A real-coded genetic algorithm with a 74-direction-based crossover operator. Inf. Sci. 305, 320–348 (2015)
Sivaraj, R., Ravichandran, T.: A review of selection methods in genetic algorithms. Int. J. Eng. Sci. Technol. 3(5), 3792–3797 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cohen, M.W., Cherchiglia, L., Costa, R. (2017). Evolving Mondrian-Style Artworks. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-55750-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55749-6
Online ISBN: 978-3-319-55750-2
eBook Packages: Computer ScienceComputer Science (R0)