Abstract
This paper proposes a automated shape generation methodology based on grammatical genetic programming for specific design cases. Two cases of the shape generation are presented: architectural envelope design and facade design. Through the described experiments, the applicability of this evolutionary method for design applications is showcased. Through this study it can be seen that automated shape generation by grammatical evolution offers a huge potential for the development of performance-based creative systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Byrne, J.: Approaches to evolutionary architectural design exploration using grammatical evolution. University College Dublin (2012)
Ceccato, C.; Simondetti, A.; Burry, M.C.: Mass-customization in design using evolutionary and parametric methods. In: Proceedings of the 2000 ACADIA Conference (2000)
Duarte, J.P.: Towards the mass customization of housing: the grammar of Siza’s houses at Malagueira. Environ. Plan. B: Plan. Des. 32(3), 347–380 (2005)
Frazer, J.: An Evolutionary Architecture. Architectural Association, London (1995)
Heisserman, J.; Woodbury, R.: Generating languages of solid models. In: SMA 1993 Proceedings on the Second ACM Symposium on Solid Modeling and Applications, pp. 103–112 (1993)
Janssen, P.; Kaushik, V.: Evolving lego. Exploring the impact of alternative encodings on the performance of evolutionary algorithms. In: Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia CAADRIA 2014, pp. 523–532 (2014)
Janssen, P.: A design method and computational architecture for generating and evolving building designs. The Hong Kong Polytechnic University (2004)
Koning, H., Eizenberg, J.: The language of the prairie. Frank Lloyd Wright’s prairie houses. Environ. Plan. B: Plan. Des. 8(3), 295–323 (1981)
Koza, J.R.: Genetic programming. a paradigm for genetically breeding populations of computer programs to solve problems. Stanford University (1990)
Langdon, W.B.: Genetic Programming and Data Structures. Genetic Programming + Data Structures = Automatic Programming!. Genetic Programming. Springer, Boston (1998). doi:10.1007/978-1-4615-5731-9
Lee, H.C., Herawan, T., Noraziah, A.: Evolutionary grammars based design framework for product innovation. Procedia Technol. 1, 132–136 (2012). doi:10.1016/j.protcy.2012.02.026
McDermott, J.: Graph grammars for evolutionary 3D design. Genet. Program Evolvable Mach. 14(3), 369–393 (2013). doi:10.1007/s1071001391900
Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995). doi:10.1162/evco.1995.3.2.199
O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001). doi:10.1109/4235.942529
Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming. Lulu Press, Raleigh (2008). lulu.com
Roudavski, A.: Towards morphogenesis in architecture. Int. J. Architect. Comput. 7(3), 345–374 (2009). doi:10.1260/147807709789621266
Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). doi:10.1007/BFb0055930
Stiny, G., Mitchell, W.J.: The palladian grammar. Environ. Plan. B: Plan. Des. 5(1), 5–18 (1978)
Williams, N., et al.: FabPod: designing with temporal flexibility & relationships to mass-customisation. Autom. Constr. 51, 124–131 (2015)
Woodbury, R.F., Burrow, A.L.: Whither design space? Artif. Intell. Eng. Des. Anal. Manufact. 20, 63–82 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Muehlbauer, M., Burry, J., Song, A. (2017). Automated Shape Design by Grammatical Evolution. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-55750-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55749-6
Online ISBN: 978-3-319-55750-2
eBook Packages: Computer ScienceComputer Science (R0)