Abstract
This paper describes a series of experiments in creating autonomous drawing robots that generate aesthetically interesting and engaging drawings. Based on a previous method for multiple software agents that mimic the biological process of niche construction, the challenge in this project was to re-interpret the implementation of a set of evolving software agents into a physical robotic system. In this new robotic system, individual robots try to reinforce a particular niche defined by the density of the lines drawn underneath them. The paper also outlines the role of environmental interactions in determining the style of drawing produced.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Although of course humans may appreciate the aesthetics and creativity too!.
- 2.
This fascination does extend to conventional human artists using computers as well – recent David Hockney exhibitions have included numerous works painted using iPhone and iPad apps that are exhibited showing the paint strokes the artist made in real time, revealing the artist’s drawing process as it occurred.
- 3.
The propensity to reproduce is also determined by a separate allele in the genome, which effectively controls the density of offspring lines created by the agent.
- 4.
- 5.
See http://www.mbed.com for more details.
References
Begon, M., Townsend, C., Harper, J.: Ecology: from individuals to ecosystems. Wiley-Blackwell, Maldon (2006)
Bird, J., Husbands, P., Perris, M., Bigge, B., Brown, P.: Implicit fitness functions for evolving a drawing robot. In: Giacobini, M. (ed.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 473–478. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78761-7_50
Boden, M.A.: Creativity and Art: Three Roads to Surprise. Oxford University Press, Chicago (2010)
Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)
Chappell, D.: Taking a point for a walk: Pattern formation with self-interacting curves. In: Greenfield, G., Hart, G., Sarhangi, R. (eds.) Bridges 2014 Conference Proceedings, pp. 337–340. Tessellations Publishing, Phoenix, Arizona (2014)
Chappell, D.: Sinuous meander patterns: a family of multi-frequency spatial RHYHMS. J. Math. Arts 9(3–4), 63–76 (2015)
Day, R.L., Laland, K.N., Odling-Smee, J.: Rethinking adaptation: the niche-construction perspective. Perspect. Biol. Med. 46(1), 80–95 (2003)
d’Inverno, M., McCormack, J.: Heroic vs collaborative AI for the arts. In: Proceedings of IJCAI 2015 (2015)
Dohm, K., Hoffmann, J.: Kunstmaschinen Maschinenkunst (Art Machines, Machine Art). Kehrer Verlag, bilingual (German/English) edn. (2008)
Eisner, T.: For Love of Insects. The Belknap Press of Harvard University Press, Cambridge (2003)
Greenfield, G.: A platform for evolving controllers for simulated drawing robots. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 108–116. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29142-5_10
Greenfield, G.: Avoidance drawings evolved using virtual drawing robots. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 78–88. Springer, Cham (2015). doi:10.1007/978-3-319-16498-4_8
Greenfield, G.: Robot paintings evolved using simulated robots. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 611–621. Springer, Heidelberg (2006). doi:10.1007/11732242_58
Grimm, V., Railsback, S.F.: Individual-based Modeling and Ecology, Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton (2005)
Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)
Lucas, G.W.: An elementary model for the differential steering system of robot actuators. Technical report, The Rossum Project (2000). http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html
McCormack, J.: Enhancing creativity with niche construction. In: Fellerman, H., Dörr, M., Hanczyc, M.M., Laursen, L.L., Maurer, S., Merkle, D., Monnard, P.A., Stoy, K., Rasmussen, S. (eds.) Artificial Life XII, pp. 525–532. MIT Press, Cambridge (2010)
McCormack, J.: Creative ecosystems. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, Chap. 2, pp. 39–60. Springer, Heidelberg (2012)
McCormack, J.: Aesthetics, art, evolution. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 1–12. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36955-1_1
Moura, L.: Machines that make art. In: Herath, D., Kroos, C., Stelarc, (eds.) Robots and Art, Cognitive Science and Technology, pp. 255–269. Springer, Heidelberg (2016)
Moura, L., Pereira, H.G.: Man + Robots – Symbiotic Art. LxXL, Black and white facsimile edn. (2014)
Odling-Smee, J., Laland, K.N., Feldman, W.M.: Niche Construction: The Neglected Process in Evolution. Monographs in Population Biology. Princeton University Press, Princeton (2003)
Perlin, K.: Improving noise. ACM Trans. Graph. (TOG) 21(3), 681–682 (2002)
Roudavski, S., McCormack, J.: Post-anthropcentric creativity. Digital Creativity 27(1), 3–6 (2016)
Still, A., d’Inverno, M.: A history of creativity for future AI research. In: Pachet, F., Cardoso, A., Corruble, V., Ghedini, F. (eds.) Proceedings of the Seventh International Conference on Computational Creativity (ICCC 2016), pp. 147–154, June 2016
Acknowledgments
Nick Jones worked on the Stenaptinus insignis robots as an Industrial Design student in our lab. This research was supported by Australian Research Council Discovery Project grants DP1094064 and DP160100166.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
McCormack, J. (2017). Niche Constructing Drawing Robots. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-55750-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55749-6
Online ISBN: 978-3-319-55750-2
eBook Packages: Computer ScienceComputer Science (R0)