Abstract
While tree-based Genetic Programming is often used with crossover, Cartesian Genetic Programming is mostly used only with mutation as genetic operator. In this paper, a new crossover technique is introduced which recombines subgraphs of two selected graphs. Experiments on symbolic regression, boolean functions and image operator design problems indicate that the use of the subgraph crossover improves the search performance of Cartesian Genetic Programming. A preliminary comparison to a former proposed crossover technique indicates that the subgraph crossover performs better on our tested problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, X., Smith, S.L., Tyrrell, A.M.: Positional independence and recombination in cartesian genetic programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 351–360. Springer, Heidelberg (2006). doi:10.1007/11729976_32
Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, vol. 2, pp. 1580–1587. ACM Press, London, 7–11 July 2007
Kaufmann, P., Platzner, M.: Advanced techniques for the creation and propagation of modules in cartesian genetic programming. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 1219–1226. ACM, Atlanta, GA, USA, 12–16 July 2008
Koza, J.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical report STAN-CS-90-1314, Department of Computer Science, Stanford University, June 1990
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)
Luke, S., Spector, L.: A comparison of crossover and mutation in genetic programming. In: Proceedings of the Second Annual Conference on Genetic Programming 1997, pp. 240–248. Morgan Kaufmann, Stanford University, CA, USA, 13–16 July 1997
Luke, S., Spector, L.: A revised comparison of crossover and mutation in genetic programming. In: Proceedings of the Third Annual Conference on Genetic Programming 1998, pp. 208–213. Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, 22–25 July 1998
McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic programming needs better benchmarks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 791–798. ACM, Philadelphia, Pennsylvania, USA, 7–11 July 2012
Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). doi:10.1007/978-3-540-46239-2_9
Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142. Morgan Kaufmann, Orlando, Florida, USA, 13–17 July 1999
Sekanina, L.: Image filter design with evolvable hardware. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoWorkshops 2002. LNCS, vol. 2279, pp. 255–266. Springer, Heidelberg (2002). doi:10.1007/3-540-46004-7_26
Slaný, K., Sekanina, L.: Fitness landscape analysis and image filter evolution using functional-level CGP. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 311–320. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71605-1_29
Walker, J.A., Miller, J.F.: Evolution and acquisition of modules in cartesian genetic programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187–197. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24650-3_17
Walker, J.A., Miller, J.F., Cavill, R.: A multi-chromosome approach to standard and embedded cartesian genetic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, vol. 1, pp. 903–910. ACM Press, Seattle, 8–12 July 2006
White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaskowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)
White, D.R., Poulding, S.: A rigorous evaluation of crossover and mutation in genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 220–231. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01181-8_19
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kalkreuth, R., Rudolph, G., Droschinsky, A. (2017). A New Subgraph Crossover for Cartesian Genetic Programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-55696-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55695-6
Online ISBN: 978-3-319-55696-3
eBook Packages: Computer ScienceComputer Science (R0)