Abstract
The availability of electronic information is necessary in our everyday life. Progressively, often, data needs to be shared among the unreliable entities. In this field, one interesting and common problem occurs when two parties want to secretly determine the intersection or cardinality of intersection of their respective private sets. PSI or its variants are ideal to solve the aforementioned problems. Existing solutions of \(\mathsf{mPSI}\) and \(\mathsf{mPSI}\)-CA mainly use trusted third party to achieve fairness. However, in real life, the unconditional trust is fraught with security risks as the trusted third party may be unfaithful or corrupted. As a consequence, construction of an efficient \(\mathsf{mPSI}\)-CA preserving fairness remains a challenging problem. In this paper, we address this issue by employing an off-line third party, called arbiter, who is assumed to be semi-trusted in the sense that he does not have access to the private information of the entities while he will follow the protocol honestly. In this work, we design a construction of fair and efficient \(\mathsf{mPSI}\)-CA utilizing Bloom filter. Our \(\mathsf{mPSI}\)-CA is proven to be secure in the random oracle model (ROM) and achieves linear communication and computation overheads. A concrete security analysis is provided in malicious environments under the Decisional Diffie-Hellman (DDH) assumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 86–97. ACM (2003)
Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4_28
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)
Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). doi:10.1007/BFb0054851
Brandt, F.: Efficient cryptographic protocol design based on distributed El Gamal encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47. Springer, Heidelberg (2006). doi:10.1007/11734727_5
Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_8
Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). doi:10.1007/BFb0052252
Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Citeseer (1997)
Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03549-4_7
Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717
Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35404-5_17
Debnath, S.K., Dutta, R.: A fair and efficient mutual private set intersection protocol from a two-way oblivious pseudorandom function. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 343–359. Springer, Cham (2015). doi:10.1007/978-3-319-15943-0_21
Debnath, S.K., Dutta, R.: Efficient private set intersection cardinality in the presence of malicious adversaries. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 326–339. Springer, Cham (2015). doi:10.1007/978-3-319-26059-4_18
Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 209–226. Springer, Cham (2015). doi:10.1007/978-3-319-23318-5_12
Debnath, S.K., Dutta, R.: Fair mPSI and mPSI-CA: Efficient constructions in prime order groups with security in the standard model against malicious adversary. IACR Cryptology ePrint Archive (2016)
Debnath, S.K., Dutta, R.: Towards fair mutual private set intersection with linear complexity. Secur. Commun. Netw. 9(11), 1589–1612 (2016)
Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 128–144. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39256-6_9
Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 789–800. ACM (2013)
Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with simulation-based security. J. Cryptology 29(1), 115–155 (2016)
Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88(1), 172–188 (2005)
Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic prfs. IACR Cryptology ePrint Archive 2015, 4 (2015)
Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols. In: Network and Distributed System Security Symposium (NDSS), The Internet Society (2012)
Kim, M., Lee, H.T., Cheon, J.H.: Mutual private set intersection with linear complexity. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 219–231. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27890-7_18
Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.1007/11535218_15
Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 515–530 (2015)
Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX Security, vol. 14, pp. 797–812 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Debnath, S.K., Dutta, R. (2017). Provably Secure Fair Mutual Private Set Intersection Cardinality Utilizing Bloom Filter. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-54705-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54704-6
Online ISBN: 978-3-319-54705-3
eBook Packages: Computer ScienceComputer Science (R0)