Abstract
Blind signature allows a user to get a signature of a signer on an arbitrary message, without leaking any information about the message. The verifier can check that whether the signature is indeed generated by the signer, and the signer cannot recall the signing situation. This property is essential when the signed message needs privacy protection for the user, like a bank bill or a trade secret. Lattice-based system is the most promising quantum-resistant primitive, and the first lattice-based blind signature is proposed by Rückert. For another, identity-based system is an alternative to public key infrastructure, as it can simplify the key management procedures in certificate-based public key systems. Illuminated by the demand of identity-based blind signature in the post-quantum circumstance, we consider the lattice-based identity based blind signature (IBBS) based on hard worst-case lattice problems. Besides, all existing lattice-based blind signatures are constructed and proved to be secure in the random oracle model. In this work, we construct an identity-based blind signature from lattices in the standard model. Our construction is proved to be one-more unforgeable under the selective identity and chosen message attacks (sID-CMA), and unconditionally blind in the standard model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Heidelberg (1982)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Gentry, C., Peikert, V., Vaikutanathan, V.: Trapdoors for hard lattices and new cryptographic construction. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 197–206. ACM, New York (2008)
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_28
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_27
Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7_29
Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8_3
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_41
Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_2
Alperin-Sheriff, J.: Short signatures with short public keys from homomorphic trapdoor functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 236–255. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2_11
Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_24
Wang, F., Hu, Y., Wang, C.: A lattice-based blind signature scheme. Geomatics Inf. Sci. Wuhan Univ. 35(5), 550–553 (2010). (in Chinese)
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_5
Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2_33
Zhang, F., Kim, K.: Efficient ID-based blind signature and proxy signature from bilinear pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 312–323. Springer, Heidelberg (2003). doi:10.1007/3-540-45067-X_27
Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006). doi:10.1007/11935230_12
Phong, L.T., Wakaha, O.: New identity-based blind signature and blind decryption scheme in the standard model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92(A(8)), 1822–1835 (2009)
Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_14
Acknowledgments
We thank the anonymous Inscrypt reviewers for their helpful comments. This work is supported by the National Natural Science Foundations of China (No.61472309 61572390, and 61672412), the 111 Project (No. B08038), and the Natural Science Foundation in Ningbo of China (No. 201601HJ-B01382).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gao, W., Hu, Y., Wang, B., Xie, J. (2017). Identity-Based Blind Signature from Lattices in Standard Model. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-54705-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54704-6
Online ISBN: 978-3-319-54705-3
eBook Packages: Computer ScienceComputer Science (R0)