Can Vehicle Become a New Pattern for Roadside Camera Calibration? | SpringerLink
Skip to main content

Can Vehicle Become a New Pattern for Roadside Camera Calibration?

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

  • 2153 Accesses

Abstract

Roadside camera calibration is essential to intelligent traffic surveillance and still an unsolved problem. The commonly used pattern-based calibration methods are suitable for the laboratory environment rather than real traffic environment, since the calibration patterns (e.g., checkerboards) generally do not exist in traffic scenarios. In view of this, we propose a new framework for roadside camera calibration where the vehicle moving on the roadway is first introduced as a calibration pattern. Considering that the vehicles are main monitoring targets and inevitably appear in traffic scenarios, the proposed calibration method has a wide use range and is not limited to the structure information of traffic scenarios. Inspired by the traditional pattern-based calibration methods that utilize the matching of 3D-2D point correspondences, we utilize the 3D-2D vehicle matching for camera calibration. The key insight is to convert the camera calibration problem into a vehicle matching problem. To improve the accuracy of calibration results, a new measure function is provided to evaluate the vehicle matching degree and a dynamic calibration method using multi-frame information is proposed to correct camera parameters. Experiments on real traffic images demonstrate the effectiveness and practicability of the proposed calibration framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Song, K., Tai, J.: Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36, 1091–1103 (2006)

    Article  Google Scholar 

  2. Kanhere, N., Birchfield, S.: A taxonomy and analysis of camera calibration methods for traffic monitoring applications. IEEE Trans. Intell. Transp. Syst. 11, 441–452 (2010)

    Article  Google Scholar 

  3. Álvarez, S., Llorca, D., Sotelo, M.: Hierarchical camera auto-calibration for traffic surveillance systems. Expert Syst. Appl. 41, 1532–1542 (2014)

    Article  Google Scholar 

  4. Lv, F., Zhao, T., Nevatia, R.: Camera calibration from video of a walking human. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1513–1518 (2006)

    Article  Google Scholar 

  5. Lee, S., Nevatia, R.: Robust camera calibration tool for video surveillance camera in urban environment. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 62–67. IEEE (2011)

    Google Scholar 

  6. Hodlmoser, M., Micusik, B., Kampel, M.: Camera auto-calibration using pedestrians and zebra-crossings. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1697–1704. IEEE (2011)

    Google Scholar 

  7. Zheng, Y., Peng, S.: A practical roadside camera calibration method based on least squares optimization. IEEE Trans. Intell. Transp. Syst. 15, 831–843 (2014)

    Article  Google Scholar 

  8. Zhang, Z., Li, M., Huang, K., Tan, T.: Practical camera auto-calibration based on object appearance and motion for traffic scene visual surveillance. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  9. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3, 323–344 (1987)

    Article  Google Scholar 

  10. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14, 965–980 (1992)

    Article  Google Scholar 

  11. Sturm, P.F., Maybank, S.J.: On plane-based camera calibration: a general algorithm, singularities, applications. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1. IEEE (1999)

    Google Scholar 

  12. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

  13. Ueshiba, T., Tomita, F.: Plane-based calibration algorithm for multi-camera systems via factorization of homography matrices. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 966–973. IEEE (2003)

    Google Scholar 

  14. Penate-Sanchez, A., Andrade-Cetto, J., Moreno-Noguer, F.: Exhaustive linearization for robust camera pose and focal length estimation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2387–2400 (2013)

    Article  Google Scholar 

  15. Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26, 892–899 (2004)

    Article  Google Scholar 

  16. Wu, F., Hu, Z., Zhu, H.: Camera calibration with moving one-dimensional objects. Pattern Recogn. 38, 755–765 (2005)

    Article  Google Scholar 

  17. de França, J.A., Stemmer, M.R., de M França, M.B., Alves, E.G.: Revisiting Zhang’s 1D calibration algorithm. Pattern Recogn. 43, 1180–1187 (2010)

    Article  MATH  Google Scholar 

  18. Chen, Q., Wu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24672-5_41

    Chapter  Google Scholar 

  19. Abad, F., Camahort, E., Vivó, R.: Camera calibration using two concentric circles. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 688–696. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30125-7_85

    Chapter  Google Scholar 

  20. Colombo, C., Comanducci, D., Bimbo, A.: Camera calibration with two arbitrary coaxial circles. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 265–276. Springer, Heidelberg (2006). doi:10.1007/11744023_21

    Chapter  Google Scholar 

  21. Chen, X., Zhao, Y.: A linear approach for determining camera intrinsic parameters using tangent circles. Multimed. Tools Appl. 74, 5709–5723 (2015)

    Article  Google Scholar 

  22. Agrawal, M., Davis, L.S.: Camera calibration using spheres: a semi-definite programming approach. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 782–789. IEEE (2003)

    Google Scholar 

  23. Zhang, H., Wong, K.Y., Zhang, G.: Camera calibration from images of spheres. IEEE Trans. Pattern Anal. Mach. Intell. 29, 499–502 (2007)

    Article  Google Scholar 

  24. Wong, K.Y., Zhang, G., Chen, Z.: A stratified approach for camera calibration using spheres. IEEE Trans. Image Process. 20, 305–316 (2011)

    Article  MathSciNet  Google Scholar 

  25. Staranowicz, A.N., Brown, G.R., Morbidi, F., Mariottini, G.L.: Practical and accurate calibration of RGB-D cameras using spheres. Comput. Vis. Image Underst. 137, 102–114 (2015)

    Article  Google Scholar 

  26. Micusik, B., Pajdla, T.: Simultaneous surveillance camera calibration and foot-head homology estimation from human detections. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1562–1569. IEEE (2010)

    Google Scholar 

  27. Dawson, D.N., Birchfield, S.T.: An energy minimization approach to automatic traffic camera calibration. IEEE Trans. Intell. Transp. Syst. 14, 1095–1108 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by National Natural Science Foundation of China (No. 61502119) and China Postdoctoral Science Foundation (No. 2015M571414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zheng, Y., Zhao, W. (2017). Can Vehicle Become a New Pattern for Roadside Camera Calibration?. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics