Abstract
Roadside camera calibration is essential to intelligent traffic surveillance and still an unsolved problem. The commonly used pattern-based calibration methods are suitable for the laboratory environment rather than real traffic environment, since the calibration patterns (e.g., checkerboards) generally do not exist in traffic scenarios. In view of this, we propose a new framework for roadside camera calibration where the vehicle moving on the roadway is first introduced as a calibration pattern. Considering that the vehicles are main monitoring targets and inevitably appear in traffic scenarios, the proposed calibration method has a wide use range and is not limited to the structure information of traffic scenarios. Inspired by the traditional pattern-based calibration methods that utilize the matching of 3D-2D point correspondences, we utilize the 3D-2D vehicle matching for camera calibration. The key insight is to convert the camera calibration problem into a vehicle matching problem. To improve the accuracy of calibration results, a new measure function is provided to evaluate the vehicle matching degree and a dynamic calibration method using multi-frame information is proposed to correct camera parameters. Experiments on real traffic images demonstrate the effectiveness and practicability of the proposed calibration framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Song, K., Tai, J.: Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36, 1091–1103 (2006)
Kanhere, N., Birchfield, S.: A taxonomy and analysis of camera calibration methods for traffic monitoring applications. IEEE Trans. Intell. Transp. Syst. 11, 441–452 (2010)
Álvarez, S., Llorca, D., Sotelo, M.: Hierarchical camera auto-calibration for traffic surveillance systems. Expert Syst. Appl. 41, 1532–1542 (2014)
Lv, F., Zhao, T., Nevatia, R.: Camera calibration from video of a walking human. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1513–1518 (2006)
Lee, S., Nevatia, R.: Robust camera calibration tool for video surveillance camera in urban environment. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 62–67. IEEE (2011)
Hodlmoser, M., Micusik, B., Kampel, M.: Camera auto-calibration using pedestrians and zebra-crossings. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1697–1704. IEEE (2011)
Zheng, Y., Peng, S.: A practical roadside camera calibration method based on least squares optimization. IEEE Trans. Intell. Transp. Syst. 15, 831–843 (2014)
Zhang, Z., Li, M., Huang, K., Tan, T.: Practical camera auto-calibration based on object appearance and motion for traffic scene visual surveillance. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3, 323–344 (1987)
Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14, 965–980 (1992)
Sturm, P.F., Maybank, S.J.: On plane-based camera calibration: a general algorithm, singularities, applications. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1. IEEE (1999)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)
Ueshiba, T., Tomita, F.: Plane-based calibration algorithm for multi-camera systems via factorization of homography matrices. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 966–973. IEEE (2003)
Penate-Sanchez, A., Andrade-Cetto, J., Moreno-Noguer, F.: Exhaustive linearization for robust camera pose and focal length estimation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2387–2400 (2013)
Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26, 892–899 (2004)
Wu, F., Hu, Z., Zhu, H.: Camera calibration with moving one-dimensional objects. Pattern Recogn. 38, 755–765 (2005)
de França, J.A., Stemmer, M.R., de M França, M.B., Alves, E.G.: Revisiting Zhang’s 1D calibration algorithm. Pattern Recogn. 43, 1180–1187 (2010)
Chen, Q., Wu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24672-5_41
Abad, F., Camahort, E., Vivó, R.: Camera calibration using two concentric circles. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 688–696. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30125-7_85
Colombo, C., Comanducci, D., Bimbo, A.: Camera calibration with two arbitrary coaxial circles. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 265–276. Springer, Heidelberg (2006). doi:10.1007/11744023_21
Chen, X., Zhao, Y.: A linear approach for determining camera intrinsic parameters using tangent circles. Multimed. Tools Appl. 74, 5709–5723 (2015)
Agrawal, M., Davis, L.S.: Camera calibration using spheres: a semi-definite programming approach. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 782–789. IEEE (2003)
Zhang, H., Wong, K.Y., Zhang, G.: Camera calibration from images of spheres. IEEE Trans. Pattern Anal. Mach. Intell. 29, 499–502 (2007)
Wong, K.Y., Zhang, G., Chen, Z.: A stratified approach for camera calibration using spheres. IEEE Trans. Image Process. 20, 305–316 (2011)
Staranowicz, A.N., Brown, G.R., Morbidi, F., Mariottini, G.L.: Practical and accurate calibration of RGB-D cameras using spheres. Comput. Vis. Image Underst. 137, 102–114 (2015)
Micusik, B., Pajdla, T.: Simultaneous surveillance camera calibration and foot-head homology estimation from human detections. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1562–1569. IEEE (2010)
Dawson, D.N., Birchfield, S.T.: An energy minimization approach to automatic traffic camera calibration. IEEE Trans. Intell. Transp. Syst. 14, 1095–1108 (2013)
Acknowledgement
This study was supported by National Natural Science Foundation of China (No. 61502119) and China Postdoctoral Science Foundation (No. 2015M571414).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zheng, Y., Zhao, W. (2017). Can Vehicle Become a New Pattern for Roadside Camera Calibration?. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-54427-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54426-7
Online ISBN: 978-3-319-54427-4
eBook Packages: Computer ScienceComputer Science (R0)