Dynamic Sum-Radii Clustering | SpringerLink
Skip to main content

Dynamic Sum-Radii Clustering

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10167))

Included in the following conference series:

  • 806 Accesses

Abstract

Real networks have in common that they evolve over time and their dynamics have a huge impact on their structure. Clustering is an efficient tool to reduce the complexity to allow representation of the data. In 2014, Eisenstat et al. introduced a dynamic version of this classic problem where the distances evolve with time and where coherence over time is enforced by introducing a cost for clients to change their assigned facility. They designed a \(\varTheta (\ln n)\)-approximation. An O(1)-approximation for the metric case was proposed later on by An et al. (2015). Both articles aimed at minimizing the sum of all client-facility distances; however, other metrics may be more relevant. In this article we aim to minimize the sum of the radii of the clusters instead. We obtain an asymptotically optimal \(\varTheta (\ln n)\)-approximation algorithm where n is the number of clients and show that existing algorithms from An et al. (2015) do not achieve a constant approximation in the metric variant of this setting.

This work was supported by Grants ANR-12-BS02-005 RDAM and IXXI-Molecal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J., Quaggiotto, M., den Broeck, W.V., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), e23176 (2011)

    Article  Google Scholar 

  3. Sundaresan, S.R., Fischhoff, I.R., Dushoff, J., Rubenstein, D.I.: Network metrics reveal differences in social organization between two fission-fusion species, grevy’s zebra and onager. Oecologia 151(1), 140–149 (2007)

    Article  Google Scholar 

  4. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  5. Tantipathananandh, C., Berger-Wolf, T.Y., Kempe, D.: A framework for community identification in dynamic social networks. In: SIGKDD, pp. 717–726 (2007)

    Google Scholar 

  6. Fotakis, D., Koutris, P.: Online sum-radii clustering. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 395–406. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2_36

    Chapter  Google Scholar 

  7. Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf. Comput. 222, 45–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci. 68(2), 417–441 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. J. Algorithms 31(1), 228–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisenstat, D., Mathieu, C., Schabanel, N.: Facility location in evolving metrics. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 459–470. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_39

    Google Scholar 

  11. An, H., Norouzi-Fard, A., Svensson, O.: Dynamic facility location via exponential clocks. In: SODA, pp. 708–721 (2015)

    Google Scholar 

  12. Fernandes, C.G., Oshiro, M.T., Schabanel, N.: Dynamic clustering of evolving networks: some results on the line. In: AlgoTel, pp. 1–4, May 2013

    Google Scholar 

  13. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems. SIAM J. Comput. 36(2), 411–432 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Behsaz, B., Salavatipour, M.R.: On minimum sum of radii and diameters clustering. Algorithmica 73(1), 143–165 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Math. Program. 22(1), 148–162 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC, pp. 624–633 (2014)

    Google Scholar 

  17. Lee, Y.T., Sidford, A.: Path finding methods for linear programming: solving linear programs in Õ(vrank) iterations and faster algorithms for maximum flow. In: Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 424–433. IEEE Computer Society, Washington (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas K. Blanchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Blanchard, N.K., Schabanel, N. (2017). Dynamic Sum-Radii Clustering. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53925-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53924-9

  • Online ISBN: 978-3-319-53925-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics