Abstract
We identify the properties of context-free grammars that exactly correspond to the behavior of the dual and primal versions of Clark and Yoshinaka’s distributional learning algorithm and call them the very weak finite context/kernel property. We show that the very weak finite context property does not imply Yoshinaka’s weak finite context property, which has been assumed to hold of the target language for the dual algorithm to succeed. We also show that the weak finite context property is genuinely weaker than Clark’s strong finite context property, settling a question raised by Yoshinaka.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Clark and Yoshinaka have used the term “distributional learning” more loosely in connection with a number of different learning paradims (see [5] for a survey).
- 2.
The present formulations follow [4].
- 3.
It is clear from Ogden’s proof that the lemma is really about one particular derivation tree of a context-free grammar. If p is the constant of Ogden’s lemma for G, we obtain the required decomposition of the derivation tree by first marking the initial \(a^p\), then the \(b^p\) preceding \(\#\), and then the \(a^p\) immediately following \(\#\).
References
Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling, vol. I. Prentice-Hall, Englewood Cliffs (1972)
Clark, A.: Learning context free grammars with the syntactic concept lattice. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 38–51. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15488-1_5
Clark, A.: The syntactic concept lattice: another algebraic theory of the context-free languages? J. Log. Comput. 25(5), 1203–1229 (2015). First published online: July 30, 2013
Clark, A., Kanazawa, M., Kobele, G.M., Yoshinaka, R.: Distributional learning of some nonlinear tree grammars. Fundamenta Informaticae 146(4), 339–377 (2016)
Clark, A., Yoshinaka, R.: Distributional learning of context-free and multiple context-free grammars. In: Heinz, J., Sempere, J.M. (eds.) Topics in Grammatical Inference, pp. 143–172. Springer, Berlin (2016)
Leiß, H.: Learning context free grammars with the finite context property: a correction of A. Clark’s algorithm. In: Morrill, G., Muskens, R., Osswald, R., Richter, F. (eds.) Formal Grammar 2014. LNCS, vol. 8612, pp. 121–137. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44121-3_8
Ogden, W.: A helpful result for proving inherent ambiguity. Math. Syst. Theory 2(3), 191–194 (1968)
Yoshinaka, R.: Towards dual approaches for learning context-free grammars based on syntactic concept lattices. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 429–440. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22321-1_37
Yoshinaka, R.: General perspectives on distributionally learnable classes. In: Kuhlmann, M., Kanazawa, M., Kobele, G.M. (eds.) Proceedings of the 14th Meeting on the Mathematics of Language, pp. 87–98. Association for Computational Linguistics, Stroudsburg (2015)
Yoshinaka, R.: Learning conjunctive grammars and contextual binary feature grammars. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 623–635. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15579-1_49
Yoshinaka, R., Kanazawa, M.: Distributional learning of abstract categorial grammars. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 251–266. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22221-4_17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kanazawa, M., Yoshinaka, R. (2017). The Strong, Weak, and Very Weak Finite Context and Kernel Properties. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science(), vol 10168. Springer, Cham. https://doi.org/10.1007/978-3-319-53733-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-53733-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53732-0
Online ISBN: 978-3-319-53733-7
eBook Packages: Computer ScienceComputer Science (R0)