Abstract
A two-dimensional word (2D) is a rectangular finite array of letters from the alphabet \(\varSigma \). A 2D word is said to be a 2D palindrome if it is equal to its reverse image. In this paper, we study some combinatorial properties of 2D palindromes. In particular, we provide a sufficient condition under which a 2D word is said to be a 2D palindrome, discuss the necessary and sufficient condition under which a 2D word can be decomposed into 2D palindromes, and find the relation between the set of all 2D palindromes and the set of all 2D primitive words. We also show that the set of all 2D palindromes is not a recognizable language, and study a special class of 2D palindromes, namely 2D palindrome square words.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amir, A., Benson, G.: Two-dimensional periodicity in rectangular arrays. SIAM J. Comput. 27(1), 90–106 (1998)
Berthé, V., Vuillon, L.: Palindromes and two-dimensional Sturmian sequences. J. Automata Lang. Comb. 6(2), 121–138 (2001)
De Natale, F.G.B., Giusto, D.D., Maccioni, F.: A symmetry-based approach to facial features extraction. In: Proceedings of 13th International Conference on Digital Signal Processing, vol. 2, pp. 521–525 (1997)
Geizhals, S., Sokol, D.: Finding maximal 2-dimensional palindromes. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016), vol. 54, pp. 19:1–19:12 (2016)
Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg (1997)
Hooda, A., Bronstein, M.M., Bronstein, A.M., Horaud, R.P.: Shape palindromes: analysis of intrinsic symmetries in 2D articulated shapes. In: Bruckstein, A.M., Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 665–676. Springer, Heidelberg (2012). doi:10.1007/978-3-642-24785-9_56
Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley Longman Inc., Boston (1969)
Kiryati, N., Gofman, Y.: Detecting symmetry in grey level images: the global optimization approach. Int. J. Comput. Vision 29(1), 29–45 (1998)
Kulkarni, M.S., Mahalingam, K.: Two-dimensional primitive words. Manuscript (in preparation)
Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)
Loy, G., Eklundh, J.-O.: Detecting symmetry and symmetric constellations of features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006). doi:10.1007/11744047_39
Lyndon, R.C., Schützenberger, M.P.: The equation \(a^m= b^n c^p\) in a free group. Mich. Math. J. 9(4), 289–298 (1962)
Matz, O.: Recognizable vs. regular picture languages. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 112–121. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75414-5_7
O’Mara, D., Owens, R.: Measuring bilateral symmetry in digital images. In: Proceedings of 1996 IEEE TENCON Digital Signal Processing Applications, vol. 1, pp. 151–156 (1996)
Pickover, C.A.: The Zen of Magic Squares, Circles, and Stars: An Exhibition of Surprising Structures Across Dimensions. Princeton University Press, Princeton (2002)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Symmetries of non-rigid shapes. In: 2007 IEEE 11th International Conference on Computer Vision. pp. 1–7 (2007)
Yu, S.S.: Languages and Codes. Tsang Hai Book Publishing Co., Taichung (2005)
Yu, S.S.: Palindrome words and reverse closed languages. Int. J. Comput. Math. 75(4), 389–402 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kulkarni, M.S., Mahalingam, K. (2017). Two-Dimensional Palindromes and Their Properties. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science(), vol 10168. Springer, Cham. https://doi.org/10.1007/978-3-319-53733-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-53733-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53732-0
Online ISBN: 978-3-319-53733-7
eBook Packages: Computer ScienceComputer Science (R0)