On the Optimal Non-linearities for Gaussian Mixtures in FastICA | SpringerLink
Skip to main content

On the Optimal Non-linearities for Gaussian Mixtures in FastICA

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10169))

Abstract

In independent component analysis we assume that the observed vector is a linear transformation of a latent vector of independent components, our objective being the estimation of the latter. Deflation-based FastICA estimates the components one-by-one by repeatedly maximizing the expected value of some function measuring non-Gaussianity, the derivative of which is called the non-linearity. Under some weak assumptions, the asymptotically optimal non-linearity for extracting sources with a specific density is given by the location score function of the density. In this paper we look into the consequences of this result from the viewpoint of estimating Gaussian location and scale mixtures. As one of our results we justify the common use of hyperbolic tangent, tanh, as a non-linearity in blind clustering by showing that it is optimal for estimating certain Gaussian mixtures. Finally, simulations are used to show that the asymptotic optimality results hold in various settings also for finite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEE Proc. F Radar Sig. Process. 140, 362–370 (1993)

    Article  Google Scholar 

  2. Dermoune, A., Wei, T.: FastICA algorithm: five criteria for the optimal choice of the nonlinearity function. IEEE Trans. Sig. Process. 61(8), 2078–2087 (2013)

    Article  Google Scholar 

  3. Gómez-Sánchez-Manzano, E., Gómez-Villegas, M., Marín, J.: Sequences of elliptical distributions and mixtures of normal distributions. J. Multivar. Anal. 97(2), 295–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Huber, P.J.: Projection pursuit. Ann. Stat. 13(2), 435–475 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hyvärinen, A.: One-unit contrast functions for independent component analysis: a statistical analysis. In: Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, pp. 388–397 (1997)

    Google Scholar 

  6. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  7. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  8. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comput. 9, 1483–1492 (1997)

    Article  Google Scholar 

  9. Koldovskỳ, Z., Tichavskỳ, P., Oja, E.: Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer-Rao lower bound. IEEE Trans. Neural Netw. 17(5), 1265–1277 (2006)

    Article  Google Scholar 

  10. Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S.: Deflation-based FastICA with adaptive choices of nonlinearities. IEEE Trans. Sig. Process. 62(21), 5716–5724 (2014)

    Article  MathSciNet  Google Scholar 

  11. Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S., Virta, J.: The squared symmetric FastICA estimator. Sig. Process. 131, 402–411 (2017)

    Article  Google Scholar 

  12. Miettinen, J., Taskinen, S., Nordhausen, K., Oja, H.: Fourth moments and independent component analysis. Stat. Sci. 30, 372–390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nordhausen, K., Ilmonen, P., Mandal, A., Oja, H., Ollila, E.: Deflation-based FastICA reloaded. In: Proceedings of 19th European Signal Processing Conference, pp. 1854–1858 (2011)

    Google Scholar 

  14. Ollila, E.: The deflation-based FastICA estimator: statistical analysis revisited. IEEE Trans. Sig. Process. 58(3), 1527–1541 (2010)

    Article  MathSciNet  Google Scholar 

  15. Palmer, J., Kreutz-Delgado, K., Rao, B.D., Wipf, D.P.: Variational EM algorithms for non-gaussian latent variable models. In: Advances in Neural Information Processing Systems, pp. 1059–1066 (2005)

    Google Scholar 

  16. Tichavský, P., Koldovský, Z., Oja, E.: Speed and accuracy enhancement of linear ICA techniques using rational nonlinear functions. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 285–292. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74494-8_36

    Chapter  Google Scholar 

  17. Virta, J., Nordhausen, K., Oja, H.: Projection pursuit for non-Gaussian independent components. arXiv (2016). https://arxiv.org/abs/1612.05445

  18. Wei, T.: On the spurious solutions of the FastICA algorithm. In: IEEE Workshop on Statistical Signal Processing, pp. 161–164 (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their stimulating comments which enhanced the paper and provided us with existing results previously unknown to us. This work was supported by the Academy of Finland Grant 268703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joni Virta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Virta, J., Nordhausen, K. (2017). On the Optimal Non-linearities for Gaussian Mixtures in FastICA. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics