Towards Better SWRL Rules Dependency Extraction | SpringerLink
Skip to main content

Towards Better SWRL Rules Dependency Extraction

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2016)

Abstract

Information systems knowledge bases often include inference rules. The continuous growth of the facts in the recent information systems environments has caused the exponential increase of rule bases sizes. Therefore, rule bases management becomes more and more difficult. Such a task should be automated and based on the extraction of dependencies between rules in order to have a better insight on their correct execution order and to detect conflicts between them. In this paper, we describe a rules dependency extraction approach for Semantic Web Rule Language (SWRL) rules. Our approach insures the automatic extraction of a rule dependency graph based on the semantics of their components. We evaluated our work by applying it to two different ontologies from medical and network security domains. We have implemented a prototype of our approach and we integrated it in a plug-in for Potégé-Owl editor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://protege.stanford.edu/.

  2. 2.

    http://www.redcad.org/.

References

  1. Baget, J.-F., Mugnier, M.-L., Thomazo, M.: Towards farsighted dependencies for existential rules. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 30–45. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23580-1_4

    Chapter  Google Scholar 

  2. Bak, J., Nowak, M., Jedrzejek, C.: Graph-based editor for SWRL rule bases. In: RuleML (2). Citeseer (2013)

    Google Scholar 

  3. Bouker, S., Saidi, R., Yahia, S.B., Nguifo, E.M.: Ranking and selecting association rules based on dominance relationship. In: 2012 IEEE 24th International Conference on Tools With Artificial Intelligence, vol. 1, pp. 658–665. IEEE (2012)

    Google Scholar 

  4. Brahim, M.B., Chaari, T., Jemaa, M.B., Jmaiel, M.: Semantic matching of web services security policies. In: 2012 7th International Conference on Risks and Security of Internet and Systems (CRiSIS), pp. 1–8. IEEE (2012)

    Google Scholar 

  5. Chevalier, J., Subercaze, J., Gravier, C., Laforest, F.: Incremental and directed rule-based inference on RDFS. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9828, pp. 287–294. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44406-2_22

    Chapter  Google Scholar 

  6. Erdem, E., Erdem, Y., Erdogan, H., Öztok, U.: Finding answers and generating explanations for complex biomedical queries. In: AAAI (2011)

    Google Scholar 

  7. Fuertes-Olivera, P.A.: The function theory of lexicography and electronic dictionaries: wiktionary as a prototype of collective free multiple-language internet dictionary. In: Bergenholtz, H., Nielsen, S., Tarp, S. (eds.) Lexicography at a Crossroads: Dictionaries and Encyclopedias Today, Lexicographical Tools Tomorrow, pp. 99–134. Peter Lang, Bern (2009). ISBN: 978-3-03911-799-4

    Google Scholar 

  8. Gantayat, N., Das, R., Cherukuri, S.C.: Automated methodology comprised of supervised techniques to assist product selection. In: Recent Advances and Innovations in Engineering (ICRAIE), pp. 1–6. IEEE (2014)

    Google Scholar 

  9. Hassanpour, S., O’Connor, M., Das, A.: Axiomé: a tool for the elicitation and management of SWRL rules. In: Proceedings of the 6th International Conference on OWL: Experiences and Directions, vol. 529, pp. 204–207. CEUR-WS.org (2009)

    Google Scholar 

  10. Hassanpour, S., O’Connor, M.J., Das, A.K.: Exploration of SWRL rule bases through visualization, paraphrasing, and categorization of rules. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 246–261. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04985-9_23

    Chapter  Google Scholar 

  11. Hassanpour, S., O’Connor, M.J., Das, A.K.: Visualizing logical dependencies in SWRL rule bases. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 259–272. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16289-3_22

    Chapter  Google Scholar 

  12. Hassanpour, S., O’Connor, M.J., Das, A.K.: Clustering rule bases using ontology-based similarity measures. Web Semant. Sci. Serv. Agents World Wide Web 25, 1–8 (2014)

    Article  Google Scholar 

  13. Hirst, G., St-Onge, D.: Lexical chains as representations of context for the detection and correction of malapropisms. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, vol. 305, pp. 305–332. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al.: SWRL: a semantic web rule language combining OWL and ruleml. In: W3C Member submission, vol. 21, p. 79 (2004)

    Google Scholar 

  15. Katta, N., Alipourfard, O., Rexford, J., Walker, D.: Cacheflow: dependency-aware rule-caching for software-defined networks. In: Proceedings of the ACM Symposium on SDN Research (SOSR) (2016)

    Google Scholar 

  16. Krötzsch, M., Rudolph, S.: On the relationship of joint acyclicity and super-weak acyclicity. Technical report, Tech. rep. 3037, Institute AIFB, Karlsruhe Institute of Technology (2013). http://www.aifb.kit.edu/web/Techreport3013

  17. Liu, Z., Feng, Z., Zhang, X., Wang, X., Rao, G.: RORS: enhanced rule-based owl reasoning on spark. arXiv preprint arXiv:1605.02824 (2016)

  18. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Complexity of inconsistency-tolerant query answering in datalog+/–. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., Leenheer, P., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185, pp. 488–500. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41030-7_35

    Chapter  Google Scholar 

  19. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview. In: W3C recommendation, vol. 10(10), p. 2004 (2004)

    Google Scholar 

  20. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  21. O’Connor, M.: Swrltab (2008)

    Google Scholar 

  22. Panchenko, A., et al.: Similarity measures for semantic relation extraction. Ph.D. thesis, UCL (2013)

    Google Scholar 

  23. Rivolli, A., Orlando, J.P., Moreira, D.A.: An analysis of rules-based systems to improve swrl tools. In: Proceedings of the ICEIS (4), pp. 191–194 (2011)

    Google Scholar 

  24. Sap, A.: See your business clearly. SAP BusinessObjects Dashboards. http://www.sap.com/uk/solutions/sapbusinessobjects/large/business-intelligence/dashboards/sapbusinessobjects-dashboards/index.epx

  25. Seipel, D.: Knowledge engineering for hybrid deductive databases. In: 29nd Workshop on (Constraint) Logic Programming (WLP 2015), p. 66 (2015)

    Google Scholar 

  26. Singh, P., Lin, T., Mueller, E.T., Lim, G., Perkins, T., Zhu, W.L.: Open mind common sense: knowledge acquisition from the general public. In: Meersman, R., Tari, Z. (eds.) OTM 2002. LNCS, vol. 2519, pp. 1223–1237. Springer, Heidelberg (2002). doi:10.1007/3-540-36124-3_77

    Chapter  Google Scholar 

  27. Speer, R., Havasi, C.: Conceptnet 5: a large semantic network for relational knowledge. In: Gurevych, I., Kim, J. (eds.) The People’s Web Meets NLP, pp. 161–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Vossen, P.: From wordnet to eurowordnet to the global wordnet grid: anchoring languages to universal meaning. Guest lecture, Language Engineering Applications, 26 February 2009

    Google Scholar 

  29. Yang, F., Xing, Y., Sun, H., Sun, T., Chen, S.: An ontology-based semantic similarity measure considering multi-inheritance in biomedicine. Math. Probl. Eng. 2015, 1–9 (2015)

    Google Scholar 

  30. Zacharias, V., Borgi, I.: Exploiting usage data for the visualization of rule bases. In: Proceedings of the 3rd International Semantic Web User Interaction Workshop SWUI. Citeseer (2006)

    Google Scholar 

  31. Zetta, T., Kontopoulos, E., Bassiliades, N.: S 2 red: a semantic web rule editor (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir Boujelben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Boujelben, A., Chaari, T., Amous, I. (2017). Towards Better SWRL Rules Dependency Extraction. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53480-0_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53479-4

  • Online ISBN: 978-3-319-53480-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics