Abstract
A new paradigm of Machine Learning named Never-Ending Learning has been proposed through a system known as NELL (Never-Ending Language Learning). The major idea of this system is to learn to read the web better each day and to store the gathered knowledge in a knowledge base (KB), continually and incrementally. This paper proposes a new method that can help NELL populating its own KB using Bayesian Networks (BN). More specifically, we use facts (knowledge) already stored in NELL’s KB as input for a BN learning algorithm named VOMOS (Variable Ordering Multiple Offspring Sampling) by aiming at representing the acquired knowledge by NELL system. In addition, we propose to use the BN induced by VOMOS for identifying new semantic relations to be added to NELL’s KB, expanding thus its initial ontology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI Press (2010)
Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A., Dalvi, B., et al.: Never-ending learning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2302–2310. AAAI Press (2015)
Carlson, A., Betteridge, J., Hruschka Jr., E.R., Mitchell, T.M.: Coupling semi-supervised learning of categories and relations. In: Proceedings of the NAACL HLT 2009, Work on Semisupervised Learning for Natural Language Processing, New Jersey, pp. 1–9 (2009)
Carlson, A., Betteridge, J., Wang, R., Hruschka Jr., E.R., Mitchell, T.M.: Coupled semi-supervised learning for information extraction. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining (2010)
Appel, A.P., Hruschka Jr., E.R.: Prophet - a link-predictor to learn new rules on NELL. In: Proceedings of the IEEE ICDM2011 Workshop on Data Mining in Networks. IEEE Press, Los Alamitos (2011)
Mohamed, T.P., Hruschka Jr., E.R., Mitchell, T.M.: Discovering relations between noun categories. In: Proceedings of the 8th Conference on Emp. Methods in Natural Language Processing, Stroudsburg, pp. 1447–1455 (2011)
Pedro, S.D.S., Hruschka, E.R.: Conversing learning: active learning and active social interaction for human supervision in never-ending learning systems. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS (LNAI), vol. 7637, pp. 231–240. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34654-5_24
Curran, J.R., Murphy, T., Scholz, B.: Minimising semantic drift with mutual exclusion bootstrapping. In: Proceedings of the 10th Conference on the Pacific Association for Computational Linguistics, pp. 172–180 (2007)
Hruschka Jr., E.R., Duarte, M.C., Nicoletti, M.C.: Coupling as strategy for reducing concept-drift in never-ending learning environments. Fundamenta Informaticae 124(1–2), 47–61 (2013)
Pennacchiotti, M., Pantel, P.: Entity extraction via ensemble semantics. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol. 1, pp. 238–247. Association for Computational Linguistics (2009)
Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)
Duarte, M.C., Hruschka, E.R.: How to read the web in Portuguese using the never-ending language learner’s principles. In: 2014 14th International Conference on Intelligent Systems Design and Applications, pp. 162–167. IEEE (2014)
Verma, S., Hruschka, E.R.: Coupled Bayesian sets algorithm for semi-supervised learning and information extraction. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 307–322. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33486-3_20
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)
Santos, E.B., Hruschka Jr., E.R., Ebecken, N.F.F.: Learning Bayesian network structures using multiple offspring sampling. In: Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA 2011). IEEE Press, Los Alamitos (2011)
Miani, R.G.L., Hruschka Jr., E.R.: Exploring association rules in a large growing knowledge base. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 7, 106–114 (2015)
La Torre, A., Pena, J.M., Muelas, S., Freitas, A.A.: Learning hybridization strategies in evolutionary algorithms. Intell. Data Anal. 14, 333–354 (2010)
Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992)
Gama, J.: Combining classification algorithms. Ph.D. thesis, University of Porto, Portugal (2000)
Santos, E.B., Ebecken, N.F.F., Hruschka Jr., E.R., Elkamel, A., Madhuranthakam, C.M.R.: Bayesian classifiers applied to the tenessee eastman process. Risk Anal. 34, 485–497 (2013)
dos Santos, E.B., Hruschka Jr., E.R., do Carmo Nicoletti, M., Ebecken, N.F.F.: The influences of canonical evolutionary algorithm operators and variable orderings in learning Bayesian classifiers from data. Int. J. Hybrid Intel. Syst. 11(3), 183–195 (2014)
Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 985–991. Morgan Kaufmann Publishers Inc. (2003)
Kimmig, A., Mihalkova, L., Getoor, L.: Lifted graphical models: a survey. Mach. Learn. 99(1), 1–45 (2015)
Schulte, O., Qian, Z., Kirkpatrick, A.E., Yin, X., Sun, Y.: Fast learning of relational dependency networks. Mach. Learn. 103(3), 377–406 (2016)
Acknowledgments
The authors acknowledge the Brazilian Institutional Program – PIBIC/FAPEMIG/UFSJ – by the scholarship granted through document no. 002/2014/PROPE to develop this research and the Univ. Lyon - UJM-Saint-Etienne (CNRS,Laboratoire Hubert Curien) in France for the support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
dos Santos, E.B., Fernandes, M.L., Hruschka, E.R., Duarte, M.C. (2017). Bayesian Networks for Identifying Semantic Relations in a Never-Ending Learning System. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-53480-0_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53479-4
Online ISBN: 978-3-319-53480-0
eBook Packages: EngineeringEngineering (R0)