Abstract
The ABC classification represents one of the most frequently used analysis in production and inventory management domains. This analysis is applied to categorize a set of items in three predefined classes A, B and C, where each class follows a specific management and control policies, in order to generate companies financial well-being. This paper introduces a new approach for the multi-criteria inventory classification based on the hybridization of the Differential Evolution algorithm (DE) with the multi-criteria decision making method namely Electre III. The evolutionary algorithm (DE) attends to learn and optimize the Electre III input parameters (criteria weights). The Electre III method generates a ranking score for all the inventory items and an ABC distribution dispatches all these items into three ordered classes A, B, C, forming a complete classification. An inventory cost function is used thereafter to evaluate each established classification. This function is based on different inventory costs and service level measurement and also represents the objective function of our model, which consists of minimizing the inventory cost. The highlight of our proposed hybridization approach DE-Electre III is the exploitation of the robustness and efficiency of used techniques. Based on generated results, our model provided encouraging results in the ABC MCIC problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babai, M., Ladhari, T., Lajili, I.: On the inventory performance of multi-criteria classification methods: empirical investigation. Int. J. Prod. Res. 53(1), 279–290 (2015)
Bhattacharya, A., Sarkar, B., Mukherjee, S.: Distance-based consensus method for ABC analysis. Int. J. Prod. Res. 45(15), 3405–3420 (2007)
Braglia, M., Grassi, A., Montanari, R.: Multi-attribute classification method for spare parts inventory management. J. Qual. Maintenance Eng. 10(1), 55–65 (2004)
Chen, J.: Peer-estimation for multiple criteria ABC inventory classification. Comput. Oper. Res. 38(12), 1784–1791 (2011)
Chen, J.X.: Multiple criteria ABC inventory classification using two virtual items. Int. J. Prod. Res. 50(6), 1702–1713 (2012)
Figueira, J.R., Greco, S., Roy, B., Słowiński, R.: An overview of electre methods and their recent extensions. J. Multi-Criteria Decis. Anal. 20(1–2), 61–85 (2013)
Flores, B., Olson, D., Dorai, V.: Management of multicriteria inventory classification. Math. Comput. Model. 16(12), 71–82 (1992)
Gajpal, P., Ganesh, L., Rajendran, C.: Criticality analysis of spare parts using the analytic hierarchy process. Int. J. Prod. Econ. 35(1), 293–297 (1994)
Güvenir, H.A.: A genetic algorithm for multicriteria inventory classification. In: Artificial Neural Nets and Genetic Algorithms, pp. 6–9. Springer (1995)
Guvenir, H.A., Erel, E.: Multicriteria inventory classification using a genetic algorithm. Eur. J. Oper. Res. 105(1), 29–37 (1998)
Hadi-Vencheh, A.: An improvement to multiple criteria ABC inventory classification. Eur. J. Oper. Res. 201(3), 962–965 (2010)
Hadi-Vencheh, A., Mohamadghasemi, A.: A fuzzy AHP-DEA approach for multiple criteria ABC inventory classification. Expert Syst. Appl. 38(4), 3346–3352 (2011)
Kabir, G.: Multiple criteria inventory classification under fuzzy environment. Int. J. Fuzzy Syst. Appl. (IJFSA) 2(4), 76–92 (2012)
Kabir, G., Hasin, M.: Multiple criteria inventory classification using fuzzy analytic hierarchy process. Int. J. Ind. Eng. Comput. 3(2), 123–132 (2012)
Liu, J., Liao, X., Zhao, W., Yang, N.: A classification approach based on the outranking model for multiple criteria ABC analysis. Omega (2015)
Mareschal, B., Brans, J., Vincke, P., et al.: PROMETHEE: A new family of outranking methods in multicriteria analysis. ULB-Universite Libre de Bruxelles, Technical report (1984)
Mohammaditabar, D., Ghodsypour, S., O’Brien, C.: Inventory control system design by integrating inventory classification and policy selection. Int. J. Prod. Econ. 140(2), 655–659 (2012)
Ng, W.L.: A simple classifier for multiple criteria ABC analysis. Eur. J. Oper. Res. 177(1), 344–353 (2007)
Partovi, F., Burton, J.: Using the analytic hierarchy process for ABC analysis. Int. J. Oper. Prod. Manage. 13(9), 29–44 (1993)
Partovi, F., Hopton, W.: The analytic hierarchy process as applied to two types of inventory problems. Prod. Inventory Manage. J. 35(1), 13 (1994)
Ramanathan, R.: ABC inventory classification with multiple-criteria using weighted linear optimization. Comput. Oper. Res. 33(3), 695–700 (2006)
Roy, B.: ELECTRE III: Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du CERO 20(1), 3–24 (1978)
Roy, B.: The outranking approach and the foundations of electre methods. Theory Decis. 31(1), 49–73 (1991)
Saaty, T.: The analytical hierarchy process: planning, setting priorities, resource allocation (1980)
Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, vol. 3. ICSI, Berkeley (1995)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Tsai, C.Y., Yeh, S.W.: A multiple objective particle swarm optimization approach for inventory classification. Int. J. Prod. Econ. 114(2), 656–666 (2008)
Zhou, P., Fan, L.: A note on multi-criteria ABC inventory classification using weighted linear optimization. Eur. J. Oper. Res. 182(3), 1488–1491 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cherif, H., Ladhari, T. (2017). Multiple Criteria Inventory Classification Approach Based on Differential Evolution and Electre III. In: Abraham, A., Haqiq, A., Alimi, A., Mezzour, G., Rokbani, N., Muda, A. (eds) Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016). HIS 2016. Advances in Intelligent Systems and Computing, vol 552. Springer, Cham. https://doi.org/10.1007/978-3-319-52941-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-52941-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52940-0
Online ISBN: 978-3-319-52941-7
eBook Packages: EngineeringEngineering (R0)