Abstract
In this paper, we propose a camera-based document retrieval system using various local features as well as indexing methods. For feature extraction, we use well known features such as LLAH, SIFT, SURF and ORB that are invariant to image transformations and work well with images captured by cameras. In addition, we employ our new features, named as Scale and Rotation Invariant Features (SRIF). SRIF is computed based on geometrical constraints between pairs of nearest points around a keypoint. Our systems are applied on dataset including 400 heterogeneous-content complex linguistic map images (huge size, 9800\(\,\times \,\)11768 pixels resolution). The experimental results show that the system using SRIF is efficient in terms of retrieval time with 95.2% retrieval accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It can be downloaded from http://navidomass.univ-lr.fr/SRIFDataset/.
References
Kokare, M.B., Shirdhonkar, M.: Document image retrieval: an overview. Int. J. Comput. Appl. 1, 114–119 (2010)
Niyogi, D., Srihari, S.N.: Use of document structure analysis to retrieve information from documents in digital libraries. In: Electronic Imaging 1997. International Society for Optics and Photonics, pp. 207–218 (1997)
Zhu, G., Doermann, D.: Automatic document logo detection. In: Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, vol. 2, pp. 864–868. IEEE (2007)
Srihari, S.N., Shetty, S., Chen, S., Srinivasan, H., Huang, C., Agam, G., Frieder, O.: Document image retrieval using signatures as queries. In: Second International Conference on Document Image Analysis for Libraries, DIAL 2006, 6-pp. IEEE (2006)
Liu, Q., Liao, C.: PaperUI. In: Iwamura, M., Shafait, F. (eds.) CBDAR 2011. LNCS, vol. 7139, pp. 83–100. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29364-1_7
Takeda, K., Kise, K., Iwamura, M.: Real-time document image retrieval on a smartphone. In: 2012 10th IAPR International Workshop on Document Analysis Systems (DAS), pp. 225–229. IEEE (2012)
Hull, J.J., Erol, B., Graham, J., Ke, Q., Kishi, H., Moraleda, J., Van Olst, D.G.: Paper-based augmented reality. In: 17th International Conference on Artificial Reality and Telexistence, pp. 205–209. IEEE (2007)
Liang, J., Doermann, D., Li, H.: Camera-based analysis of text and documents: a survey. IJDAR 7, 84–104 (2005)
Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3, 177–280 (2008)
Li, J., Allinson, N.M.: A comprehensive review of current local features for computer vision. Neurocomputing 71, 1771–1787 (2008)
Rusiñol, M., Karatzas, D., Lladós, J.: Spotting graphical symbols in camera-acquired documents in real time. In: Lamiroy, B., Ogier, J.-M. (eds.) GREC 2013. LNCS, vol. 8746, pp. 3–10. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44854-0_1
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)
Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP 2, 331–340 (2009)
Nakai, T., Kise, K., Iwamura, M.: Use of affine invariants in locally likely arrangement hashing for camera-based document image retrieval. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 541–552. Springer, Heidelberg (2006). doi:10.1007/11669487_48
Takeda, K., Kise, K., Iwamura, M.: Real-time document image retrieval for a 10 million pages database with a memory efficient and stability improved LLAH. In: 2011 International Conference on Document Analysis and Recognition, pp. 1054–1058 (2011)
Kise, K., Chikano, M., Iwata, K., Iwamura, M., Uchida, S., Omachi, S.: Expansion of queries and databases for improving the retrieval accuracy of document portions: an application to a camera-pen system. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 309–316. ACM (2010)
Nakai, T., Kise, K., Iwamura, M.: Real-time retrieval for images of documents in various languages using a web camera. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009, pp. 146–150. IEEE (2009)
Wolfson, H.J., Rigoutsos, I.: Geometric hashing: an overview. Comput. Sci. Eng. 4, 10–21 (1997)
Nakai, T., Kise, K., Iwamura, M.: Camera based document image retrieval with more time and memory efficient LLAH. In: Proceedings of the CBDAR, pp. 21–28 (2007)
Nakai, T., Kise, K., Iwamura, M.: Hashing with local combinations of feature points and its application to camera-based document image retrieval. In: Proceedings of the CBDAR 2005, pp. 87–94 (2005)
Iwamura, M., Nakai, T., Kise, K.: Improvement of retrieval speed and required amount of memory for geometric hashing by combining local invariants. In: Proceedings of the 18th British Machine Vision Conference (BMVC 2007), vol. 2, pp. 1010–1019 (2007)
Uchiyama, H., Saito, H., Servieres, M., Moreau, G.: AR GIS on a physical map based on map image retrieval using LLAH tracking. In: MVA, pp. 382–385 (2009)
Yang, S.: Symbol recognition via statistical integration of pixel-level constraint histograms: a new descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 27, 278–281 (2005)
Dang, Q., Luqman, M., Coustaty, M., N., Tran, C., Ogier, J.: Srif: scale and rotation invariant features for camera-based document image retrieval. In: 13th International Conference on Document Analysis and Recognition, ICDAR 2015, pp. 601–605. IEEE (2015)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)
Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). doi:10.1007/11744023_34
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_56
Valenzuela, R.E.G., Schwartz, W.R., Pedrini, H.: Dimensionality reduction through PCA over sift and surf descriptors. In: 11th IEEE Conference on Cybernetic Intelligent Systems, vol. 1, pp. 58–63 (2012)
Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient indexing for high-dimensional similarity search. In: Proceedings of the 33rd International Conference on Very large Data Bases, pp. 950–961. VLDB Endowment (2007)
Dang, Q., Luqman, M., Coustaty, M., Nayef, N., Tran, C., Ogier, J.: A multi-layer approach for camera-based complex map image retrieval and spotting system. In: 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2014)
Acknowledgment
This work has been partially supported by the LabEx PERSYVAL Lab (ANR-11-LABX-0025), by the CNRS PEPS Project CartoDialect, by the Program 165 of Vietnamese government by the ECLATS project funded by the French National Research Agency (ANR) under the grant ANR-15-CE-380002. The authors would like to thank Ms. MARWA MANSRI and Ms. TRAN HUYNH LE who helped us to construct the dataset and ground truth.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Quoc Dang, B., Le Viet, P., Luqman, M.M., Coustaty, M., Tran Cao, D., Ogier, JM. (2017). A System for Camera-Based Retrieval of Heterogeneous-Content Complex Linguistic Map. In: Lamiroy, B., Dueire Lins, R. (eds) Graphic Recognition. Current Trends and Challenges. GREC 2015. Lecture Notes in Computer Science(), vol 9657. Springer, Cham. https://doi.org/10.1007/978-3-319-52159-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-52159-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52158-9
Online ISBN: 978-3-319-52159-6
eBook Packages: Computer ScienceComputer Science (R0)