A System for Camera-Based Retrieval of Heterogeneous-Content Complex Linguistic Map | SpringerLink
Skip to main content

A System for Camera-Based Retrieval of Heterogeneous-Content Complex Linguistic Map

  • Conference paper
  • First Online:
Graphic Recognition. Current Trends and Challenges (GREC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9657))

Included in the following conference series:

  • 543 Accesses

Abstract

In this paper, we propose a camera-based document retrieval system using various local features as well as indexing methods. For feature extraction, we use well known features such as LLAH, SIFT, SURF and ORB that are invariant to image transformations and work well with images captured by cameras. In addition, we employ our new features, named as Scale and Rotation Invariant Features (SRIF). SRIF is computed based on geometrical constraints between pairs of nearest points around a keypoint. Our systems are applied on dataset including 400 heterogeneous-content complex linguistic map images (huge size, 9800\(\,\times \,\)11768 pixels resolution). The experimental results show that the system using SRIF is efficient in terms of retrieval time with 95.2% retrieval accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It can be downloaded from http://navidomass.univ-lr.fr/SRIFDataset/.

References

  1. Kokare, M.B., Shirdhonkar, M.: Document image retrieval: an overview. Int. J. Comput. Appl. 1, 114–119 (2010)

    Google Scholar 

  2. Niyogi, D., Srihari, S.N.: Use of document structure analysis to retrieve information from documents in digital libraries. In: Electronic Imaging 1997. International Society for Optics and Photonics, pp. 207–218 (1997)

    Google Scholar 

  3. Zhu, G., Doermann, D.: Automatic document logo detection. In: Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, vol. 2, pp. 864–868. IEEE (2007)

    Google Scholar 

  4. Srihari, S.N., Shetty, S., Chen, S., Srinivasan, H., Huang, C., Agam, G., Frieder, O.: Document image retrieval using signatures as queries. In: Second International Conference on Document Image Analysis for Libraries, DIAL 2006, 6-pp. IEEE (2006)

    Google Scholar 

  5. Liu, Q., Liao, C.: PaperUI. In: Iwamura, M., Shafait, F. (eds.) CBDAR 2011. LNCS, vol. 7139, pp. 83–100. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29364-1_7

    Chapter  Google Scholar 

  6. Takeda, K., Kise, K., Iwamura, M.: Real-time document image retrieval on a smartphone. In: 2012 10th IAPR International Workshop on Document Analysis Systems (DAS), pp. 225–229. IEEE (2012)

    Google Scholar 

  7. Hull, J.J., Erol, B., Graham, J., Ke, Q., Kishi, H., Moraleda, J., Van Olst, D.G.: Paper-based augmented reality. In: 17th International Conference on Artificial Reality and Telexistence, pp. 205–209. IEEE (2007)

    Google Scholar 

  8. Liang, J., Doermann, D., Li, H.: Camera-based analysis of text and documents: a survey. IJDAR 7, 84–104 (2005)

    Article  Google Scholar 

  9. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3, 177–280 (2008)

    Article  Google Scholar 

  10. Li, J., Allinson, N.M.: A comprehensive review of current local features for computer vision. Neurocomputing 71, 1771–1787 (2008)

    Article  Google Scholar 

  11. Rusiñol, M., Karatzas, D., Lladós, J.: Spotting graphical symbols in camera-acquired documents in real time. In: Lamiroy, B., Ogier, J.-M. (eds.) GREC 2013. LNCS, vol. 8746, pp. 3–10. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44854-0_1

    Google Scholar 

  12. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  13. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP 2, 331–340 (2009)

    Google Scholar 

  14. Nakai, T., Kise, K., Iwamura, M.: Use of affine invariants in locally likely arrangement hashing for camera-based document image retrieval. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 541–552. Springer, Heidelberg (2006). doi:10.1007/11669487_48

    Chapter  Google Scholar 

  15. Takeda, K., Kise, K., Iwamura, M.: Real-time document image retrieval for a 10 million pages database with a memory efficient and stability improved LLAH. In: 2011 International Conference on Document Analysis and Recognition, pp. 1054–1058 (2011)

    Google Scholar 

  16. Kise, K., Chikano, M., Iwata, K., Iwamura, M., Uchida, S., Omachi, S.: Expansion of queries and databases for improving the retrieval accuracy of document portions: an application to a camera-pen system. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 309–316. ACM (2010)

    Google Scholar 

  17. Nakai, T., Kise, K., Iwamura, M.: Real-time retrieval for images of documents in various languages using a web camera. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009, pp. 146–150. IEEE (2009)

    Google Scholar 

  18. Wolfson, H.J., Rigoutsos, I.: Geometric hashing: an overview. Comput. Sci. Eng. 4, 10–21 (1997)

    Article  Google Scholar 

  19. Nakai, T., Kise, K., Iwamura, M.: Camera based document image retrieval with more time and memory efficient LLAH. In: Proceedings of the CBDAR, pp. 21–28 (2007)

    Google Scholar 

  20. Nakai, T., Kise, K., Iwamura, M.: Hashing with local combinations of feature points and its application to camera-based document image retrieval. In: Proceedings of the CBDAR 2005, pp. 87–94 (2005)

    Google Scholar 

  21. Iwamura, M., Nakai, T., Kise, K.: Improvement of retrieval speed and required amount of memory for geometric hashing by combining local invariants. In: Proceedings of the 18th British Machine Vision Conference (BMVC 2007), vol. 2, pp. 1010–1019 (2007)

    Google Scholar 

  22. Uchiyama, H., Saito, H., Servieres, M., Moreau, G.: AR GIS on a physical map based on map image retrieval using LLAH tracking. In: MVA, pp. 382–385 (2009)

    Google Scholar 

  23. Yang, S.: Symbol recognition via statistical integration of pixel-level constraint histograms: a new descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 27, 278–281 (2005)

    Article  Google Scholar 

  24. Dang, Q., Luqman, M., Coustaty, M., N., Tran, C., Ogier, J.: Srif: scale and rotation invariant features for camera-based document image retrieval. In: 13th International Conference on Document Analysis and Recognition, ICDAR 2015, pp. 601–605. IEEE (2015)

    Google Scholar 

  25. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  27. Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32

    Chapter  Google Scholar 

  28. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). doi:10.1007/11744023_34

    Chapter  Google Scholar 

  29. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  30. Valenzuela, R.E.G., Schwartz, W.R., Pedrini, H.: Dimensionality reduction through PCA over sift and surf descriptors. In: 11th IEEE Conference on Cybernetic Intelligent Systems, vol. 1, pp. 58–63 (2012)

    Google Scholar 

  31. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient indexing for high-dimensional similarity search. In: Proceedings of the 33rd International Conference on Very large Data Bases, pp. 950–961. VLDB Endowment (2007)

    Google Scholar 

  32. Dang, Q., Luqman, M., Coustaty, M., Nayef, N., Tran, C., Ogier, J.: A multi-layer approach for camera-based complex map image retrieval and spotting system. In: 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2014)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the LabEx PERSYVAL Lab (ANR-11-LABX-0025), by the CNRS PEPS Project CartoDialect, by the Program 165 of Vietnamese government by the ECLATS project funded by the French National Research Agency (ANR) under the grant ANR-15-CE-380002. The authors would like to thank Ms. MARWA MANSRI and Ms. TRAN HUYNH LE who helped us to construct the dataset and ground truth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao Quoc Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Quoc Dang, B., Le Viet, P., Luqman, M.M., Coustaty, M., Tran Cao, D., Ogier, JM. (2017). A System for Camera-Based Retrieval of Heterogeneous-Content Complex Linguistic Map. In: Lamiroy, B., Dueire Lins, R. (eds) Graphic Recognition. Current Trends and Challenges. GREC 2015. Lecture Notes in Computer Science(), vol 9657. Springer, Cham. https://doi.org/10.1007/978-3-319-52159-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52159-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52158-9

  • Online ISBN: 978-3-319-52159-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics