No-Reference Image Quality Assessment Based on Internal Generative Mechanism | SpringerLink
Skip to main content

No-Reference Image Quality Assessment Based on Internal Generative Mechanism

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10132))

Included in the following conference series:

  • 3423 Accesses

Abstract

No-reference (NR) image quality assessment (IQA) aims to measure the visual quality of a distorted image without access to its non-distorted reference image. Recent neuroscience research indicates that human visual system (HVS) perceives and understands perceptual signals with an internal generative mechanism (IGM). Based on the IGM, we propose a novel and effective no-reference IQA framework in this paper. First, we decompose an image into an orderly part and a disorderly one using a computational prediction model. Then we extract the joint statistics of two local contrast features from the orderly part and local binary pattern (LBP) based structural distributions from the other part, respectively. And finally, two groups of features extracted from the complementary parts are combined to train a regression model for image quality estimation. Extensive experiments on some standard databases validate that the proposed IQA method shows highly competitive performance to state-of-the-art NR-IQA ones. Moreover, the proposed metric also demonstrates its effectiveness on the multiply-distorted images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Z., Jiang, T., Tian, Y.: Quality assessment for comparing image enhancement algorithms. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3003–3010. IEEE (2014)

    Google Scholar 

  2. Corriveau, P., Webster, A.: The video quality experts group: evaluates objective methods of video image quality assessment. In: 140th SMPTE Technical Conference and Exhibit, pp. 1–8, October 1998

    Google Scholar 

  3. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  4. Gao, D., Han, S., Vasconcelos, N.: Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 989–1005 (2009)

    Article  Google Scholar 

  5. Gao, F., Tao, D., Gao, X., Li, X.: Learning to rank for blind image quality assessment. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2275–2290 (2015)

    Article  MathSciNet  Google Scholar 

  6. Gu, K., Zhai, G., Yang, X., Zhang, W.: Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Trans. Broadcast. 60(3), 555–567 (2014)

    Article  Google Scholar 

  7. Jayaraman, D., Mittal, A., Moorthy, A.K., Bovik, A.C.: Objective quality assessment of multiply distorted images. In: 2012 Conference Record of 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1693–1697, November 2012

    Google Scholar 

  8. Knill, D.C., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27(12), 712–719 (2004)

    Article  Google Scholar 

  9. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006 (2010)

    Article  Google Scholar 

  10. Li, Y., Po, L.M., Xu, X., Feng, L.: No-reference image quality assessment using statistical characterization in the shearlet domain. Sig. Process.: Image Commun. 29(7), 748–759 (2014)

    Google Scholar 

  11. Lu, Q., Zhou, W., Li, H.: A no-reference image sharpness metric based on structural information using sparse representation. Inf. Sci. 369, 334–346 (2016)

    Article  MathSciNet  Google Scholar 

  12. Lyu, S., Simoncelli, E.P.: Nonlinear image representation using divisive normalization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8, June 2008

    Google Scholar 

  13. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  14. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference approaches to image and video quality assessment. Multimedia Qual. Exp. (QoE): Curr. Status Future Requir., Ch. 5, 99–121 (2015)

    Google Scholar 

  15. Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Sig. Process. Lett. 17(5), 513–516 (2010)

    Article  Google Scholar 

  16. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  Google Scholar 

  17. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  18. Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  Google Scholar 

  19. Sheikh, H.R., Bovik, A.C., de Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005)

    Article  Google Scholar 

  20. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  21. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  22. Sun, C., Li, H., Li, W.: No-reference image quality assessment based on global and local content perception. In: Visual Communications and Image Processing (VCIP), November 2016

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Wu, J., Lin, W., Shi, G., Liu, A.: Perceptual quality metric with internal generative mechanism. IEEE Trans. Image Process. 22(1), 43–54 (2013)

    Article  MathSciNet  Google Scholar 

  25. Wu, J., Lin, W., Shi, G., Wang, X., Li, F.: Pattern masking estimation in image with structural uncertainty. IEEE Trans. Image Process. 22(12), 4892–4904 (2013)

    Article  MathSciNet  Google Scholar 

  26. Wu, J., Lin, W., Shi, G., Xu, L.: Reduced-reference image quality assessment with local binary structural pattern. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 898–901, June 2014

    Google Scholar 

  27. Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)

    Article  MathSciNet  Google Scholar 

  28. Xue, W., Zhang, L., Mou, X.: Learning without human scores for blind image quality assessment. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 995–1002, June 2013

    Google Scholar 

  29. Ye, P., Doermann, D.: No-reference image quality assessment using visual codebooks. IEEE Trans. Image Process. 21(7), 3129–3138 (2012)

    Article  MathSciNet  Google Scholar 

  30. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1098–1105, June 2012

    Google Scholar 

  31. Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  33. Zhang, M., Muramatsu, C., Zhou, X., Hara, T., Fujita, H.: Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Sig. Process. Lett. 22(2), 207–210 (2015)

    Article  Google Scholar 

  34. Zhang, P., Zhou, W., Wu, L., Li, H.: SOM: semantic obviousness metric for image quality assessment. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2394–2402, June 2015

    Google Scholar 

  35. Zhang, X., Wu, X.: Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans. Image Process. 17(6), 887–896 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported in part to Prof. Houqiang Li by 973 Program under Contract 2015CB351803, Natural Science Foundation of China (NSFC) under Contract 61390514 and Contract 61325009, and in part to Dr. Wengang Zhou by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Qian, X., Zhou, W., Li, H. (2017). No-Reference Image Quality Assessment Based on Internal Generative Mechanism. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10132. Springer, Cham. https://doi.org/10.1007/978-3-319-51811-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51811-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51810-7

  • Online ISBN: 978-3-319-51811-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics