Abstract
Tracking methods based on correlation filters have gained popularity in recent years due to their robustness to rotations, occlusions, and other challenging aspects of visual tracking. Such methods generate a confidence or response map which is used to estimate the new location of the tracked target. By examining the features of this map, important details about the tracker status can be inferred and compensatory measures can be taken in order to minimize failures. We propose an algorithm that uses the mean and entropy of this response map to prevent bad target model updates caused by problems such as occlusions and motion blur as well as to determine the size of the target search area. Quantitative experiments demonstrate that our method improves success plots over a baseline tracker that does not incorporate our failure detection mechanism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Because of implementation difficulties, our evaluation excludes the redTeam sequence and covers only 99 of the original 100 sequences.
References
Chen, Z., Hong, Z., Tao, D.: An experimental survey on correlation filter-based tracking (2015). arXiv preprint arXiv:1509.05520
Tang, M., Feng, J.: Multi-kernel correlation filter for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3038–3046 (2015)
Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: The IEEE International Conference on Computer Vision (ICCV) (2015)
Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: The IEEE International Conference on Computer Vision (ICCV) (2015)
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking (2015). arXiv preprint arXiv:1510.07945
Zhu, G., Wang, J., Lu, H.: Clustering based ensemble correlation tracking. Comput. Vis. Image Underst. (2016)
Lukežič, A., Čehovin, L., Kristan, M.: Deformable parts correlation filters for robust visual tracking (2016). arXiv preprint arXiv:1605.03720
Akin, O., Erdem, E., Erdem, A., Mikolajczyk, K.: Deformable part-based tracking by coupled global and local correlation filters. J. Vis. Commun. Image Represent. 38, 763–774 (2016)
Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2756–2759. IEEE (2010)
Biresaw, T.A., Alvarez, M.S., Regazzoni, C.S.: Online failure detection and correction for bayesian sparse feature-based object tracking. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 320–324. IEEE (2011)
Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J.: Feature trajectory retrieval with application to accurate structure and motion recovery. In: Bebis, G., et al. (eds.) ISVC 2011. LNCS, vol. 6938, pp. 156–167. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24028-7_15
Zhang, J., Ma, S., Sclaroff, S.: MEEM: robust tracking via multiple experts using entropy minimization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 188–203. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10599-4_13
Hong, Z., Chen, Z., Wang, C., Mei, X., Prokhorov, D., Tao, D.: Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 749–758 (2015)
Wu, Y., Hu, J., Li, F., Cheng, E., Yu, J., Ling, H.: Kernel-based motion-blurred target tracking. In: Bebis, G., et al. (eds.) ISVC 2011. LNCS, vol. 6939, pp. 486–495. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24031-7_49
Siena, S., Kumar, B.V.: Detecting occlusion from color information to improve visual tracking. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1110–1114. IEEE (2016)
Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1834–1848 (2015)
Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernandez, G., Vojir, T., Hager, G., Nebehay, G., Pflugfelder, R.: The visual object tracking VOT2015 challenge results. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1–23 (2015)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Walsh, R., Medeiros, H. (2016). Detecting Tracking Failures from Correlation Response Maps. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-50835-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50834-4
Online ISBN: 978-3-319-50835-1
eBook Packages: Computer ScienceComputer Science (R0)