Abstract
To address the challenges of poor grid stability, intermittency of wind speed, lack of decision-making, and low economic benefits, many countries have set strict grid codes that wind power generators must accomplish. One of the major factors that can increase the efficiency of wind turbines (WTs) is the simultaneous control of the different parts in several operating area. A high performance controller can significantly increase the amount and quality of energy that can be captured from wind. The main problem associated with control design in wind generator is the presence of asymmetric in the dynamic model of the system, which makes a generic supervisory control scheme for the power management of WT complicated. Consequently, supervisory controller can be utilized as the main building block of a wind farm controller (offshore), which meets the grid code requirements and can increased the efficiency of WTs, the stability and intermittency problems of wind power generation. This Chapter proposes a new robust adaptive supervisory controller for the optimal management of a variable speed turbines (VST) and a battery energy storage system (BESS) in both regions (II and III) simultaneously under wind speed variation and grid demand changes. To this end, the second order sliding mode (SOSMC) with the adaptive gain super-twisting control law and fuzzy logic control (FLC) are used in the machine side, BESS side and grid side converters. The control objectives are fourfold:
-
(i)
Control of the rotor speed to track the optimal value;
-
(ii)
Maximum Power Point Tracking (MPPT) mode or power limit mode for adaptive control;
-
(iii)
Maintain the DC bus voltage close to its nominal value;
-
(iv)
Ensure: a smooth regulation of grid active and reactive power quantity, a satisfactory power factor correction and a high harmonic performance in relation to the AC source and eliminating the chattering effect.
Results of extensive simulation studies prove that the proposed supervisory control system guarantees to track reference signals with a high harmonic performance despite external disturbance uncertainties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nikolova, S., Causevski, A., & Al-Salaymeh, A. (2013). Optimal operation of conventional power plants in power system with integrated renewable energy sources. Energy Conversion and Management, 65(2013), 697–703.
Zou, Y., Elbuluk, M. E., & Sozer, Y. (2013). Simulation comparisons and implementation of induction generator wind power systems. IEEE Transactions on Industry Applications, 49(3), 1119–1128.
Carranza, O., Figueres, E., Garcerá, G., & Gonzalez-Medina, R. (2013). Analysis of the control structure of wind energy generation systems based on a permanent magnet synchronous generator. Applied Energy, 103(2013), 522–538.
Aissaoui, A. G., Tahour, A., Essounbouli, N., Nollet, F., Abid, M., & Chergui, M. I. (2013). A Fuzzy-PI control to extract an optimal power from wind turbine. Energy Conversion and Management, 65(2013), 688–696.
Abdullah, M. A., Yatim, A. H. M., Tan, C. W., et al. (2012). A review of maximum power point tracking algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, 16(5), 3220–3227.
Jaramillo-Lopez, F., Kenne, G., & Lamnabhi-Lagarrigue, F. (2016). A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction. Renewable Energy, 86(2016), 38–48.
Syed, I. M., Venkatesh, B., Wu, B., & Nassif, A. B. (2012). Two-layer control scheme for a supercapacitor energy storage system coupled to a Doubly fed induction generator. Electric Power Systems Research, 86(2012), 76–83.
Domínguez-García, J. L., Gomis-Bellmunt, O., Bianchi, F. D., & Sumper, A. (2012). Power oscillation damping supported by wind power: a review. Renewable and Sustainable Energy Reviews, 16(7), 4994–5006.
Zhao, H., Wu, Q., Hu, S., Xu, H., & Rasmussen, C. N. (2015). Review of energy storage system for wind power integration support. Applied Energy, 137(2015), 545–553.
Azar, A. T., & Zhu, Q. (2015). Advances and Applications In Sliding Mode Control Systems. Studies in computational intelligence (vol. 576). Germany: Springer. ISBN: 978-3-319-11172-8.
Abdeddaim, S., & Betka, A. (2013). Optimal tracking and robust power control of the DFIG wind turbine. International Journal of Electrical Power & Energy Systems, 49(2013), 234–242.
Gao, R., & Gao, Z. (2016). Pitch control for wind turbine systems using optimization, estimation and compensation. Renewable Energy, 91(2016), 501–515.
Kumar, A., & Verma, V. (2016). Photovoltaic-grid hybrid power fed pump drive operation for curbing the intermittency in PV power generation with grid side limited power conditioning. International Journal of Electrical Power & Energy Systems, 82(2016), 409–419.
Yin, X. X., Lin, Y. G., Li, W., Liu, H. W., & Gu, Y. J. (2015). Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines. ISA Transactions, 58(2015), 629–634.
Saravanakumar, R., & Jena, D. (2015). Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine. International Journal of Electrical Power & Energy Systems, 69(2015), 421–429.
Kim, H., Son, J., & Lee, J. (2011). A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Transactions on Industrial Electronics, 58(9), 4069–4077.
Ramesh, T., Panda, A. K., & Kumar, S. S. (2015). Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive. ISA Transactions, 57(2915), 262–275.
Thirusakthimurugan, P., & Dananjayan, P. (2007). A novel robust speed controller scheme for PMBLDC motor. ISA Transactions, 46(4), 471–477.
Pichan, M., Rastegar, H., & Monfared, M. (2013). Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems. Energy, 51(2013), 154–162.
Uhlen, K., Foss, B. A., & Gjøsæter, O. B. (1994). Robust control and analysis of a wind-diesel hybrid power plant. IEEE Transactions on Energy Conversion, 9(4), 701–708.
Evangelista, C., Valenciaga, F., & Puleston, P. (2013). Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains. IEEE Transactions on Energy Conversion, 28(3), 682–689.
Billela, M., Dib, D., & Azar, A. T. (2016). A Second order sliding mode and fuzzy logic control to Optimal Energy Management in PMSG Wind Turbine with Battery Storage. In Neural Computing and Applications. Springer. doi:10.1007/s00521-015-2161-z.
Assareh, E., & Biglari, M. (2015). A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm. Renewable and Sustainable Energy Reviews, 51(2015), 1023–1037.
Witczak, P., Patan, K., Witczak, M., Puig, V., & Korbicz, J. (2015). A neural network-based robust unknown input observer design: Application to wind turbine. IFAC-PapersOnLine, 48(21), 263–270.
Ata, R. (2015). Artificial neural networks applications in wind energy systems: a review. Renewable and Sustainable Energy Reviews, 49(2015), 534–562.
Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems–A review. Renewable and Sustainable Energy Reviews, 48(2015), 585–607.
Banerjee, A., Mukherjee, V., & Ghoshal, S. P. (2014). Intelligent fuzzy-based reactive power compensation of an isolated hybrid power system. International Journal of Electrical Power & Energy Systems, 57(2014), 164–177.
Castillo, O., & Melin, P. (2014). A review on interval type-2 fuzzy logic applications in intelligent control. Information Sciences, 279(2014), 615–631.
Mérida, J., Aguilar, L. T., & Dávila, J. (2014). Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization. Renewable Energy, 71(2014), 715–728.
Hong, C.-M., Huang, C.-H., & Cheng, F.-S. (2014). Sliding Mode Control for Variable-speed Wind Turbine Generation Systems Using Artificial Neural Network. Energy Procedia, 61(2014), 1626–1629.
Benbouzid, M., Beltran, B., Amirat, Y., Yao, G., Han, J., & Mangel, H. (2014). Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement. ISA Transactions, 53(3), 827–833.
Liu, J., Lin, W., Alsaadi, F., & Hayat, T. (2015). Nonlinear observer design for PEM fuel cell power systems via second order sliding mode technique. Neurocomputing, 168(2015), 145–151.
Evangelista, C. A., Valenciaga, F., & Puleston, P. (2012). Multivariable 2-sliding mode control for a wind energy system based on a double fed induction generator. International Journal of Hydrogen Energy, 37(13), 10070–10075.
Eltamaly, A. M., & Farh, H. M. (2013). Maximum power extraction from wind energy system based on fuzzy logic control. Electric Power Systems Research, 97(2013), 144–150.
Meghni, B., Saadoun, A., Dib, D., & Amirat, Y. (2015). Effective MPPT technique and robust power control of the PMSG wind turbine. IEEJ Transactions on Electrical and Electronic Engineering, 10(6), 619–627.
Sarrias, R., Fernández, L. M., García, C. A., & Jurado, F. (2012). Coordinate operation of power sources in a doubly-fed induction generator wind turbine/battery hybrid power system. Journal of Power Sources, 205(2012), 354–366.
Sarrias-Mena, R., Fernández-Ramírez, L. M., García-Vázquez, C. A., & Jurado, F. (2014). Improving grid integration of wind turbines by using secondary batteries. Renewable and Sustainable Energy Reviews, 34(2014), 194–207.
Sharma, P., Sulkowski, W., & Hoff, B. (2013). Dynamic stability study of an isolated wind-diesel hybrid power system with wind power generation using IG, PMIG and PMSG: A comparison. International Journal of Electrical Power & Energy Systems, 53(2013), 857–866.
Liu, J., Meng, H., Hu, Y., Lin, Z., & Wang, W. (2015). A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account. Energy Conversion and Management, 10(2015), 738–748.
Nasiri, M., Milimonfared, J., & Fathi, S. H. (2014). Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines. Energy Conversion and Management, 86(2014), 892–900.
Daili, Y., Gaubert, J.-P., & Rahmani, L. (2015). Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors. Energy Conversion and Management, 97(2015), 298–306.
Kortabarria, I., Andreu, J., de Alegría, I. M., Jiménez, J., Gárate, J. I., & Robles, E. (2014). A novel adaptative maximum power point tracking algorithm for small wind turbines. Renewable Energy, 63(2014), 785–796.
Ghedamsi, K., & Aouzellag, D. (2010). Improvement of the performances for wind energy conversions systems. International Journal of Electrical Power & Energy Systems, 32(9), 936–945.
Poitiers, F., Bouaouiche, T., & Machmoum, M. (2009). Advanced control of a doubly-fed induction generator for wind energy conversion. Electric Power Systems Research, 79(7), 1085–1096.
Hong, C.-M., Chen, C.-H., & Tu, C.-S. (2013). Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors. Energy Conversion and Management, 69(2013), 58–67.
Zou, Y., Elbuluk, M., & Sozer, Y. (2013). Stability analysis of maximum power point tracking (MPPT) method in wind power systems. IEEE Transactions on Industry Applications, 49(3), 1129–1136.
Narayana, M., Putrus, G. A., Jovanovic, M., Leung, P. S., & McDonald, S. (2012). Generic maximum power point tracking controller for small-scale wind turbines. Renewable Energy, 44(2012), 72–79.
Yin, M., Li, G., Zhou, M., & Zhao, C. (2007). Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In Power Engineering Society General Meeting, IEEE 2007, June 24-28, 2007, Tampa, FL, (pp. 1–6). doi:10.1109/PES.2007.385982.
SimPowerSystems, T. M. (2010). Reference, Hydro-Qu{é}bec and the MathWorks. Inc., Natick, MA.
Jain, B., Jain, S., & Nema, R. K. (2015). Control strategies of grid interfaced wind energy conversion system: An overview. Renewable and Sustainable Energy Reviews, 47(2015), 983–996.
Benelghali, S., El Hachemi Benbouzid, M., Charpentier, J. F., Ahmed-Ali, T., & Munteanu, I. (2011). Experimental validation of a marine current turbine simulator: Application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Transactions on Industrial Electronics, 58(1), 118–126.
Rafiq, M., Rehman, S., Rehman, F., Butt, Q. R., & Awan, I. (2012). A second order sliding mode control design of a switched reluctance motor using super twisting algorithm. Simulation Modelling Practice and Theory, 25(2012), 106–117.
Soler, J., Daroqui, E., Gimeno, F.J., Seguí-Chilet, S., & Orts, S. (2005). Analog low cost maximum power point tracking PWM circuit for DC loads. In Proceedings of the Fifth IASTED International Conference on Power and Energy Sysemst, Benalmadena, Spain, June 15–17, 2005.
Gkavanoudis, S. I., & Demoulias, C. S. (2014). A combined fault ride-through and power smoothing control method for full-converter wind turbines employing Supercapacitor Energy Storage System. Electric Power Systems Research, 106(2014), 62–72.
Pena, R., Cardenas, R., Proboste, J., Asher, G., & Clare, J. (2008). Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer. IEEE Transactions on Industrial Electronics, 55(1), 330–339.
Tapia, G., Tapia, A., & Ostolaza, J. X. (2007). Proportional–integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Transactions on Energy Conversion, 22(2), 488–498.
Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications, 2(4), 1–28.
Azar, A. T. (2010). Fuzzy systems. Vienna: IN-TECH. ISBN 978-953-7619-92-3.
Azar, A.T., & Vaidyanathan, S. (2015). Handbook of research on advanced intelligent control engineering and automation. In Advances in Computational Intelligence and Robotics (ACIR) Book Series, IGI Global, USA.
Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in computational intelligence (vol. 575). Germany: Springer. ISBN 978-3-31911016-5.
Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design, studies in computational intelligence (Vol. 581). Germany: Springer. ISBN 978-3-319-13131-3.
Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing (vol. 319). Germany: Springer. ISBN: 978-3-31912882-5 123.
Azar, A.T., & Serrano, F.E. (2015). Design and modeling of anti wind up PID controllers. In Q. Zhu & A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations, Studies in Fuzziness and Soft Computing (vol. 319, pp. 1–44). Germany: Springer, Germany. doi:10.1007/978-3-319-12883-2_1.
Azar, A. T., & Serrano, F. E. (2015). Adaptive sliding mode control of the furuta pendulum. In A. T. Azar & Q. Zhu, (Eds.) Advances and Applications in Sliding Mode Control systems, Studies in Computational Intelligence, (vol. 576, pp. 1–42). Berlin/Heidelberg: Springer GmbH. doi:10.1007/978-3-319-11173-5_1.
Azar, A. T., & Serrano, F. E. (2015). Deadbeat control for multivariable systems with time varying delays. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design, studies in computational intelligence (vol 581, pp 97–132). Berlin: Springer GmbH. doi:10.1007/978-3-319-13132-0_6.
Mekki, H., Boukhetala, D., & Azar, A. T. (2015). Sliding modes for fault tolerant control. In A.T. Azar & Q Zhu (Eds.) Advances and applications in sliding mode control systems, studies in computational intelligence book Series (vol. 576, pp 407–433). Berlin: Springer GmbH. doi:10.1007/978-3-319-11173-5_15.
Luo, Y., & Chen, Y. (2012). Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica, 48(9), 2159–2167.
Ebrahimkhani, S. (2016). Robust fractional order sliding mode control of doubly-fed induction generator (dfig)-based wind turbines. ISA transactions, 2016. In Press.
Munteanu, I., Bacha, S., Bratcu, A. I., Guiraud, J., & Roye, D. (2008). Energy-reliability optimization of wind energy conversion systems by sliding mode control. IEEE Transactions on Energy Conversion, 23(3), 975–985.
Beltran, B., Ahmed-Ali, T., & Benbouzid, M. E. H. (2008). Sliding mode power control of variable-speed wind energy conversion systems. IEEE Transactions on Energy Conversion, 23(2), 551–558.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Meghni, B., Dib, D., Azar, A.T., Ghoudelbourk, S., Saadoun, A. (2017). Robust Adaptive Supervisory Fractional Order Controller for Optimal Energy Management in Wind Turbine with Battery Storage. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-50249-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50248-9
Online ISBN: 978-3-319-50249-6
eBook Packages: EngineeringEngineering (R0)