Abstract
There exists a proliferation of different approaches to using portfolios and algorithm selection to make solving combinatorial search and optimisation problems more efficient, as surveyed in the previous chapter. In this chapter, we take a look at a detailed case study that leverages transformations between problem representations to make portfolios more effective, followed by extensions to the state of the art that make algorithm selection more robust in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
We note that multiple containers may have the same group, but in order to make containers easily identifiable, in this example we have assigned a different group to each container.
References
CSP Solver Competition Benchmarks. http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html (2009)
Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7_14
Argelich, J., Li, C., Manyà, F., Planes, J.: Maxsat evaluations (2012). www.maxsat.udl.cat
Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 competition. In: Proceedings of SAT Competition 2013, p. 42 (2013)
Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013. In: Proceedings of SAT Competition 2013 (2013)
Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling problem. Eur. J. Oper. Res. 217(3), 531–540 (2012)
Carlo, H., Vis, I., Roodbergen, K.: Storage yard operations in container terminals: literature overview, trends, and research directions. Eur. J. Oper. Res. 235(2), 412–430 (2014)
Data, S.: (2011). http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
Een, N., Sörensson, N.: Minisat 2.2 (2013). http://minisat.se
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72200-7_23
Gecode Team: Gecode: Generic Constraint Development Environment (2006). http://www.gecode.org
Ghahramani, Z., Griffiths, T.L., Sollich, P.: Bayesian nonparametric latent feature models. In: World Meeting on Bayesian Statistics (2006)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the Third International CSP Solver Competition (2008)
Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint programming and combinatorial optimisation in numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13520-0_22
Helmert, M., Röger, G., Karpas, E.: Fast downward stone soup: a baseline for building planner portfolios. In: ICAPS (2011)
Hoos, H.: Adaptive novelty+: novelty+ with adaptive noise. In: AAAI (2002)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985). http://dx.doi.org/10.1007/BF01908075
Hutter, F., Tompkins, D., Hoos, H.: Rsaps: reactive scaling and probabilistic smoothing. In: CP (2002)
Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_35
Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific algorithm configuration. In: ECAI, pp. 751–756 (2010)
Kotthoff, L.: LLAMA: leveraging learning to automatically manage algorithms. Technical report, June 2013. arXiv:1306.1031, http://arxiv.org/abs/1306.1031
Le Berre, D., Lynce, I.: CSP2SAT4J: a simple CSP to SAT translator. In: Proceedings of the Second International CSP Solver Competition (2008)
Lecoutre, C., Tabary, S.: Abscon 112, toward more robustness. In: Proceedings of the Third International CSP Solver Competition (2008)
Lee, Y., Hsu, N.: An optimization model for the container pre-marshalling problem. Comput. Oper. Res. 34(11), 3295–3313 (2007)
Lehnfeld, J., Knust, S.: Loading, unloading and premarshalling of stacks in storage areas: survey and classification. Eur. J. Oper. Res. 239(2), 297–312 (2014)
Li, C., Huang, W.: G2wsat: gradient-based greedy walksat. SAT 3569, 158–172 (2005)
Malitsky, Y., Sellmann, M.: Instance-specific algorithm configuration as a method for non-model-based portfolio generation. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 244–259. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_16
Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: IJCAI (2013)
Manthey, N.: The SAT solver RISS3G at SC 2013. In: Proceedings of SAT Competition 2013, p. 72 (2013)
Martin, C., Porter, M.: The extraordinary SVD. Math. Assoc. Am. 119(10), 838–851 (2012)
Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Understanding random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_33
Pham, D., Anbulagan: ranov. Solver description. SAT Competition (2007)
Pham, D., Gretton, C.: gnovelty+. Solver description. SAT Competition (2007)
Prasantha, H.: Image compression using SVD. In: Conference on Computational Intelligence and Multimedia Applications, pp. 143–145 (2007)
Prestwich, S.: Vw: Variable weighting scheme. SAT (2005)
Rand, W.: Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc. 66(336), 846–850 (1971)
Roussel, O., Lecoutre, C.: XML Representation of Constraint Networks: Format XCSP 2.1. CoRR abs/0902.2362 (2009)
Rutz, O.J., Bucklin, R.E., Sonnier, G.P.: A latent instrumental variables approach to modeling keyword conversion in paid search advertising. J. Mark. Res. 49, 306–319 (2012)
Soos, M.: Cryptominisat 2.9.0 (2011)
Stahlbock, R., Voß, S.: Operations research at container terminals: a literature update. OR Spectr. 30(1), 1–52 (2008)
Tamura, N., Tanjo, T., Banbara, M.: System description of a SAT-based CSP solver sugar. In: Proceedings of the Third International CSP Solver Competition, pp. 71–75 (2009)
Tanjo, T., Tamura, N., Banbara, M.: Azucar: a SAT-based CSP solver using compact order encoding. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 456–462. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8_37
Choco team: choco: an Open Source Java Constraint Programming Library (2008)
Thornton, J., Pham, D., Bain, S., Ferreira, V.: Additive versus multiplicative clause weighting for SAT. In: PRICAI, pp. 405–416 (2008)
Tierney, K., Pacino, D., Voß, S.: Solving the pre-marshalling problem to optimality with A* and IDA*. Technical report, WP#1401, DS&OR Lab, University of Paderborn (2014)
Tompkins, D., Hutter, F., Hoos, H.: saps. Solver description. SAT Competition(2007)
Wei, W., Li, C., Zhang, H.: adaptg2wsatp. Solver description. SAT Competition(2007)
Wei, W., Li, C., Zhang, H.: Combining adaptive noise and promising decreasing variables in local search for SAT. Solver description. SAT Competition(2007)
Wei, W., Li, C., Zhang, H.: Deterministic and random selection of variables in local search for sat. Solver description. SAT Competition (2007)
Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: AAAI (2010)
Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: SATzilla 2012: improved algorithm selection based on cost-sensitive classification models. SAT Competition (2012)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)
Yang, W., Yi, D., Xie, Y., Tian, F.: Statistical identification of syndromes feature and structure of disease of western medicine based on general latent structure mode. Chin. J. Integr. Med. 18, 850–861 (2012)
Acknowledgements
This work is supported by Science Foundation Ireland (SFI) Grant 10/IN.1/I3032 and FP7 FET-Open Grant 284715. The Insight Centre for Data Analytics is supported by SFI Grant SFI/12/RC/2289.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Hurley, B., Kotthoff, L., Malitsky, Y., Mehta, D., O’Sullivan, B. (2016). Advanced Portfolio Techniques. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O'Sullivan, B., Pedreschi, D. (eds) Data Mining and Constraint Programming. Lecture Notes in Computer Science(), vol 10101. Springer, Cham. https://doi.org/10.1007/978-3-319-50137-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-50137-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50136-9
Online ISBN: 978-3-319-50137-6
eBook Packages: Computer ScienceComputer Science (R0)