Abstract
The ability to traverse uneven terrain is one of the key advantages of legged robots. However, their effectiveness relies on selecting appropriate gait parameters, such as stride height and leg stiffness. The optimal parameters highly depend on the characteristics of the terrain. This work presents a novel stereo vision based terrain sensing method for a hexapod robot with 30 degrees of freedom. The terrain in front of the robot is analyzed by extracting a set of features which enable the system to characterize a large number of terrain types. Gait parameters and leg stiffness for impedance control are adapted based on this terrain characterization. Experiments show that adaptive impedance control leads to efficient locomotion in terms of energy consumption, mission success and body stability.
T. Homberger and M. Bjelonic—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Video available here: https://confluence.csiro.au/display/ASL/ISER2016Stereo.
- 2.
Adaptive stride height will be addressed in future work.
References
Bares, J.E., Whittaker, W.L.: Configuration of autonomous walkers for extreme terrain. Int. J. Robot. Res. 12(6), 535–559 (1993)
Belter, D., Walas, K.: A compact walking robot - flexible research and development platform. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 343–352. Springer, Heidelberg (2014)
Görner, M., Wimböck, T., Baumann, A., Fuchs, M., Bahls, T., Grebenstein, M., Borst, C., Butterfass, J., Hirzinger, G.: The DLR-Crawler: a testbed for actively compliant hexapod walking based on the fingers of DLR-Hand II. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1525–1531 (2008)
Bellutta, P., Manduchi, R., Matthies, L., Owens, K., Rankin, A.: Terrain perception for DEMO III. In: IEEE Intelligent Vehicles Symposium, pp. 326–331 (2000)
Coyle, E., Jr., E.G.C., Roberts, R.G.: Speed independent terrain classification using singular value decomposition interpolation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4014–4019 (2011)
Tsujita, K., Matsuda, M., Masuda, T.: An adaptive locomotion of a quadruped robot on irregular terrain using simple biomimetic oscillator and reflex controllers without visual information. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1358–1363, December 2010
Krebs, A., Pradalier, C., Siegwart, R.: Comparison of boosting based terrain classification using proprioceptive and exteroceptive data. In: Khatib, O., Kumar, V., Pappas, G. (eds.) Experimental Robotics. STAR, vol. 54, pp. 93–102. Springer, Heidelberg (2009)
Brooks, C.A., Iagnemma, K.: Vibration-based terrain classification for planetary exploration rovers. IEEE Trans. Robot. 21(6), 1185–1191 (2005)
Best, G., Moghadam, P., Kottege, N., Kleeman, L.: Terrain classification using a hexapod robot. In: Australasian Conference on Robotics and Automation (ACRA) (2013)
Christie, J., Kottege, N.: Acoustics based terrain classification for legged robots. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)
Bjelonic, M., Kottege, N., Beckerle, P.: Proprioceptive control of an over-actuated hexapod robot in unstructured terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016, to appear)
Bellone, M., Reina, G., Giannoccaro, N.I., Spedicato, L.: Unevenness point descriptor for terrain analysis in mobile robot applications. Int. J. Adv. Robot. Syst. 10, 284 (2013)
Hoffman, R., Krotkov, E.: Terrain roughness measurement from elevation maps. In: Advances in Intelligent Robotics Systems Conference, pp. 104–114 (1990)
Aeschimann, R., Borges, P.V.K.: Ground or obstacles? Detecting clear paths in vehicle navigation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3927–3934 (2015)
Chilian, A., Hirschmüller, H.: Stereo camera based navigation of mobile robots on rough terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4571–4576 (2009)
Kolter, J.Z., Kim, Y., Ng, A.Y.: Stereo vision and terrain modeling for quadruped robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1557–1564 (2009)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press Inc., Orlando (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Homberger, T., Bjelonic, M., Kottege, N., Borges, P.V.K. (2017). Terrain-Dependant Control of Hexapod Robots Using Vision. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-50115-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50114-7
Online ISBN: 978-3-319-50115-4
eBook Packages: EngineeringEngineering (R0)