Semantic Data Acquisition by Traversing Class–Class Relationships Over Linked Open Data | SpringerLink
Skip to main content

Semantic Data Acquisition by Traversing Class–Class Relationships Over Linked Open Data

  • Conference paper
  • First Online:
Semantic Technology (JIST 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10055))

Included in the following conference series:

Abstract

Linked Open Data (LOD), a powerful mechanism for linking different datasets published on the World Wide Web, is expected to increase the value of data through mashups of various datasets on the Web. One of the important requirements for LOD is to be able to find a path of resources connecting two given classes. Because each class contains many instances, inspecting all of the paths or combinations of the instances results in an explosive increase of computational complexity. To solve this problem, we have proposed an efficient method that obtains and prioritizes a comprehensive set of connections over resources by traversing class–class relationships of interest. To put our method into practice, we have been developing a tool for LOD exploration. In this paper, we introduce the technologies used in the tool, focusing especially on the development of a measure for predicting whether a path of class–class relationships has connected triples or not. Because paths without connected triples can be predicted and removed, using the prediction measure enables us to display more paths from which users can obtain data that interests them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ebi.ac.uk/rdf/services/reactome/.

  2. 2.

    http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html.

  3. 3.

    https://www.w3.org/TR/void/.

  4. 4.

    https://www.w3.org/TR/sparql11-service-description/.

  5. 5.

    http://www.sparqlbuilder.org/doc/sbm_2015sep/.

  6. 6.

    http://www.sparqlbuilder.org/sbm/.

References

  1. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology, 1st edn. 1: 1, 1–136. Morgan & Claypool (2011)

    Google Scholar 

  2. Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., Gaulton, A., Gehant, S., Laibe, C., Redaschi, N., Wimalaratne, S.M., Martin, M., Le Novére, N., Parkinson, H., Birney, E., Jenkinson, A.M.: The EBI RDF platform: linked open data for the life sciences. Bioinformatics 30(9), 1338–1339 (2014)

    Article  Google Scholar 

  3. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inf. 41(5), 706–716 (2008)

    Article  Google Scholar 

  4. Redaschi, N., UniProt Consortium: UniProt in RDF: tackling data integration and distributed annotation with the semantic web. Nat. Precedings (2009). doi:10.1038/npre.2009.3193.1

  5. Fu, G., Batchelor, C., Dumontier, M., Hastings, J., Willighagen, E., Bolton, E.: PubChemRDF: towards the semantic annotation of PubChem compound and substance databases. J. Cheminformatics 7(34) (2015). doi:10.1186/s13321-015-0084-4

  6. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder: revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol. 5887, pp. 182–187. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10543-2_21

    Chapter  Google Scholar 

  7. Popov, I.O., Schraefel, M.C., Hall, W., Shadbolt, N.: Connecting the dots: a multi-pivot approach to data exploration. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 553–568. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_35

    Chapter  Google Scholar 

  8. Ferré, S.: Sparklis: a SPARQL endpoint explorer for expressive question answering. In: Proceedings of the ISWC 2014 Posters & Demonstrations Track, CEUR Workshop Proceedings 1272, Riva del Garda, Italy (2014)

    Google Scholar 

  9. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg (2006). doi:10.1007/11926078_40

    Chapter  Google Scholar 

  10. Qu, Y., Ge, W., Cheng, G., Gao, Z.: Class association structure derived from linked objects. In: Proceedings of the Web Science Conference (WebSci 2009: Society On-Line), Athens, Greece (2009)

    Google Scholar 

  11. Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Kobayashi, N.: An intelligent SPARQL query builder for exploration of various life-science databases. In: The 3rd International Workshop on Intelligent Exploration of Semantic Data (IESD 2014), CEUR Workshop Proceedings 1279, Riva del Garda, Italy (2014)

    Google Scholar 

  12. Villalon, P., Suárez-Figueroa, M.C., Gómez-Pérez, A.: A double classification of common pitfalls in ontologies. In: Workshop on Ontology Quality (OntoQual 2010), Lisbon, Portugal (2010)

    Google Scholar 

  13. Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Yamamoto, Y., Kobayashi, N.: Efficiently finding paths between classes to build a SPARQL query for life-science databases. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S. (eds.) JIST 2015. LNCS, vol. 9544, pp. 321–330. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31676-5_24

    Chapter  Google Scholar 

  14. Yamamoto, Y., Yamaguchi, A., Bono, H., Takagi, T.: Allie: a database and a search service of abbreviations and long forms. Database (2011). doi:10.1093/database/bar013

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 25280081, 24120002 and the National Bioscience Database Center (NBDC) of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yamaguchi, A., Kozaki, K., Lenz, K., Yamamoto, Y., Masuya, H., Kobayashi, N. (2016). Semantic Data Acquisition by Traversing Class–Class Relationships Over Linked Open Data. In: Li, YF., et al. Semantic Technology. JIST 2016. Lecture Notes in Computer Science(), vol 10055. Springer, Cham. https://doi.org/10.1007/978-3-319-50112-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50112-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50111-6

  • Online ISBN: 978-3-319-50112-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics