Toward Interactive Visualization of Results from Domain-Specific Text Analytics | SpringerLink
Skip to main content

Toward Interactive Visualization of Results from Domain-Specific Text Analytics

  • Conference paper
  • First Online:
Advanced Visual Interfaces. Supporting Big Data Applications (AVI-BDA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10084))

Included in the following conference series:

  • 631 Accesses

Abstract

In big data analytics, visualization and access are central for the creation of knowledge and value from data. Interactive visualizations of analysis of structured data are commonplace. In this paper, information visualization and interaction for text analysis are addressed. The paper motivates this issue from a data usage standpoint, gives a survey of approaches in the area of interactive visualization of text analytics, and presents our proposal of a specific solution design for visual interaction with results from a combination of named entity recognition (NER) and text categorization (TC). This matrix-based model illustrates abstract views on complex relationships between abstract entities and is exemplary for any combination of feature extraction and TC. The aim of our proposal is to support feature extraction and TC researchers in distributed virtual research environments by providing intuitive visual interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 entity track. In: Proceedings of the Nineteenth Text REtrieval Conference (TREC). NIST (NIST Special Publication, SP 500–294) (2010)

    Google Scholar 

  2. Bertin, J.: Sémiologie Graphique, Editions Gauthier-Villars (1967). Paris, France (German translation Jensch, G., Schade, D., Scharfe, W. Graphische Semiologie. Diagramme Netze Karten Berlin (1974)

    Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(45), 993–1022 (2003). doi:10.1162/jmlr.2003.3.4-5.993

    Article  MATH  Google Scholar 

  4. Bornschlegl, M.X., Berwind, K., Kaufmann, M., Engel, F., Walsh, P., Hemmje, M.L., Riestra, R.: IVIS4BigData: a reference model for advanced visual interfaces supporting big data analysis in virtual research environments (2016)

    Google Scholar 

  5. Candela, L., Castelli, D., Pagano, P.: Virtual research environments: an overview and a research agenda. Data Sci. J. 12, grdi75–grdi81 (2013). http://doi.org/10.2481/dsj.GRDI013

    Article  Google Scholar 

  6. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  7. Chuang, J., Manning, C.D., Heer, J.: Termite: visualization techniques for assessing textual topic models. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 74–77 (2012)

    Google Scholar 

  8. Demchenko, Y., Grosso, P., de Laat, C., Membrey, P.: Addressing big data issues in scientific data infrastructure. In: International Conference on Collaboration Technologies and Systems (CTS), p. 4855 (2013)

    Google Scholar 

  9. Dou, W., Wang, X., Skau, D., Ribarsky, W., Zhou, M.X.: LeadLine: interactive visual analysis of text data through event identification and exploration. In: IEEE Conference on Visual Analytics Science and Technology (VAST) (2012)

    Google Scholar 

  10. Grinstein, G., Trutschl, M., Cvek, U.: High Dimensional Visualization Institute for Visualization and Perception Research, University of Massachusetts Lowell (2001). http://www.cs.uml.edu/mtrutsch/research/High-Dimensional_Visualizations-KDD2001-color.pdf

  11. Jurafsky, D., Martin, J.H.: Speech and language processing. In: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall series in artificial intelligence, 2nd edn. Pearson Prentice Hall, Upper Saddle (2009)

    Google Scholar 

  12. Kaufmann, M.: Towards a reference model for big data management. Research report, Faculty of Mathematics, Computer Science, University of Hagen. https://ub-deposit.fernuni-hagen.de/receive/mir_mods_00000583. Accessed 4 July 2016

  13. Larsen, P.O., Ins, M.: The rate of growth in scientific publication and the decline in coverage by science citation index. Scientometrics 84(3), 575–603 (2010). Springer

    Article  Google Scholar 

  14. MLib documentation. http://spark.apache.org/docs/latest/mllib-guide.html. Accessed 28 Feb

  15. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  16. Nawroth, C., Schmedding, M., Brocks, H., Kaufmann, M., Fuchs, M., Hemmje, M.L.: Toward cloud-based knowledge capturing based on natural language processing. In: Machine Learning in Automated Text Categorization. HOLACONF - Cloud Forward: From Distributed to Complete Computing (2015)

    Google Scholar 

  17. NIST Special Publication 1500–6, NIST Big Data Interoperability Framework, vol. 6. Reference Architecture. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.Spp.1500-6.pdf. Accessed 7 Apr 2016

  18. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34, 1–47 (2002)

    Article  Google Scholar 

  19. Singh, D., Reddy, C.K.: Survey on platforms for big data analytics. J. Big Data (2012). http://www.journalofbigdata.com/content/1/1/8. Accessed 28 Feb 2016

  20. Stasko, J., Gärg, C., Liu, Z.: Jigsaw: supporting investigative analysis through interactive visualization. Inf. Vis. 7(2), 118–132 (2008)

    Article  Google Scholar 

  21. Swoboda, S., Kaufmann, M., Hemmje, M.L.: Toward cloud-based classification and annotation support. In: Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016), vol. 2, pp. 131–137 (2016)

    Google Scholar 

  22. Wei, F., Liu, S., Song, Y., Pan, S., Zhou, M.X., Qian, W.: TIARA: a visual exploratory text analytic system. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 153–162 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Swoboda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Swoboda, T., Nawroth, C., Kaufmann, M., Hemmje, M.L. (2016). Toward Interactive Visualization of Results from Domain-Specific Text Analytics. In: Bornschlegl, M.X., Engel, F.C., Bond, R., Hemmje, M.L. (eds) Advanced Visual Interfaces. Supporting Big Data Applications. AVI-BDA 2016. Lecture Notes in Computer Science(), vol 10084. Springer, Cham. https://doi.org/10.1007/978-3-319-50070-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50070-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50069-0

  • Online ISBN: 978-3-319-50070-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics