Subgraphs in Non-uniform Random Hypergraphs | SpringerLink
Skip to main content

Subgraphs in Non-uniform Random Hypergraphs

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2016)

Abstract

Myriad problems can be described in hypergraph terms. However, the theory and tools are not sufficiently developed to allow most problems to be tackled directly within this context. The main purpose of this paper is to increase the awareness of this important gap and to encourage the development of this formal theory, in conjunction with the consideration of concrete applications. As a starting point, we concentrate on the problem of finding (small) subhypergraphs in a (large) hypergraph. Many existing algorithms reduce this problem to the known territory of graph theory by considering the 2-section graph. We argue that this is not the right approach, neither from a theoretical point of view (by considering a generalization of the classic model of binomial random graphs to hypergraphs) nor from a practical one (by performing experiments on two datasets).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, M., Robins, G.: Small worlds among interlocking directors: network structures and distance in bipartite graphs. Comput. Math. Org. Theor. 10(1), 69–94 (2004)

    Article  MATH  Google Scholar 

  2. Bahmanian, M., Sajna, M.: Connection, separation in hypergraphs (2015). arXiv:1504.04274v1

  3. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  4. Bollobás, B.: Random graphs. In: Temperley, H.N.V. (ed.) Combinatorics. London Mathematical Society Lecture Note Series, vol. 52, pp. 80–102. Cambridge University Press, Cambridge (1981)

    Chapter  Google Scholar 

  5. Borgatti, S., Everett, M.: Network analysis of 2-mode data. Soc. Netw. 19(3), 243–269 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duchet, P.: Hypergraphs. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics. Elsevier, Amsterdam (1995)

    Google Scholar 

  7. Dudek, A., Frieze, A.M.: Loose Hamilton cycles in random \(k\)-uniform hypergraphs. Electron. J. Comb. 17, P48 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Dudek, A., Frieze, A.M.: Tight Hamilton cycles in random uniform hypergraphs. Random Struct. Algorithms 42, 374–385 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferber, A.: Closing gaps in problems related to Hamilton cycles in random graphs and hypergraphs (preprint)

    Google Scholar 

  10. Frieze, A.M., Karoński, M.: Introduction to Random Graphs. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  11. Le Blond, S., Guillaume, J.-L., Latapy, M.: Clustering in P2P exchanges and consequences on performances. In: Castro, M., Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 193–204. Springer, Heidelberg (2005). doi:10.1007/11558989_18

    Chapter  Google Scholar 

  12. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  13. Johansson, A., Kahn, J., Vu, V.: Factor in random graphs. Random Struct. Algorithms 33, 1–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Latapy, M., Magnien, C., Del Vecchio, N.: Basic notions for the analysis of large two-mode networks. Soc. Netw. 30(1), 31–48 (2008)

    Article  Google Scholar 

  15. Zhou, W., Nakhleh, L.: Properties of metabolic graphs: biological organization or representation artifacts? BMC Bioinform. 12, 132 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Pérez-Giménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Dewar, M. et al. (2016). Subgraphs in Non-uniform Random Hypergraphs. In: Bonato, A., Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2016. Lecture Notes in Computer Science(), vol 10088. Springer, Cham. https://doi.org/10.1007/978-3-319-49787-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49787-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49786-0

  • Online ISBN: 978-3-319-49787-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics