Semantic Data Integration | SpringerLink
Skip to main content

Semantic Data Integration

  • Chapter
  • First Online:
Handbook of Big Data Technologies

Abstract

The growing volume, variety and complexity of data being collected for scientific purposes presents challenges for data integration. For data to be truly useful, scientists need not only to be able to access it, but also be able to interpret and use it. Doing this requires semantic context. Semantic Data Integration is an active field of research, and this chapter describes the current challenges and how existing approaches are addressing them. The chapter then provides an overview of several active research areas within the semantic data integration field, including interactive and collaborative schema matching, integration of geospatial and biomedical data, and visualization of the data integration process. Finally, the need to move beyond the discovery of simple 1-to-1 equivalence matches to the identification of more complex relationships across datasets is presented and possible first steps in this direction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 45759
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 57199
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 57199
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.w3.org/DesignIssues/LinkedData.html.

  2. 2.

    http://mapekus.fiit.stuba.sk.

  3. 3.

    http://oaei.ontologymatching.org.

  4. 4.

    http://oaei.ontologymatching.org/2013/interactive/index.html.

  5. 5.

    www.geonames.org.

  6. 6.

    http://linkedgeodata.org.

  7. 7.

    http://data.ordnancesurvey.co.uk.

  8. 8.

    http://www.opengeospatial.org/standards/gml.

  9. 9.

    http://www.opengeospatial.org/standards/geosparql.

  10. 10.

    http://www.opengeospatial.org/standards/kml.

  11. 11.

    http://www.opengeospatial.org/standards/wfs.

References

  1. M.R. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M.J. Cafarella, A. Kumar, F. Niu, Y. Park, C. Ré, C. Zhang, Brainwash: a data system for feature engineering, in CIDR (2013)

    Google Scholar 

  2. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig et al., Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  3. K. Baclawski, C.J. Matheus, M.M. Kokar, J. Letkowski, P.A. Kogut, Towards a symptom ontology for semantic web applications, The Semantic Web–ISWC 2004 (Springer, New York, 2004), pp. 650–667

    Google Scholar 

  4. A. Ballatore, A. Zipf, A conceptual quality framework for volunteered geographic information, Spatial Information Theory (Springer, New York, 2015), pp. 89–107

    Google Scholar 

  5. T. Berners-Lee, J. Hendler, O. Lassila et al., The semantic web. Sci. Am. 284(5), 28–37 (2001)

    Article  Google Scholar 

  6. O. Bodenreider, The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)

    Article  Google Scholar 

  7. A.T. Boin, G.J. Hunter, Do spatial data consumers really understand data quality information, in 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences (Citeseer, 2006), pp. 215–224

    Google Scholar 

  8. A. Callahan, J. Cruz-Toledo, P. Ansell, M. Dumontier, Bio2RDF release 2: improved coverage, interoperability and provenance of life science linked data, The Semantic Web: Semantics and Big Data (Springer, New York, 2013), pp. 200–212

    Google Scholar 

  9. S. Castano, A. Ferrara, S. Montanelli, G. Varese, Ontology and instance matching, Knowledge-Driven Multimedia Information Extraction and Ontology Evolution (Springer, New York, 2011), pp. 167–195

    Google Scholar 

  10. M. Cheatham, P. Hitzler, String similarity metrics for ontology alignment, The Semantic Web–ISWC 2013 (Springer, New York, 2013), pp. 294–309

    Google Scholar 

  11. M. Cheatham, P. Hitzler, Conference v2. 0: an uncertain version of the OAEI conference benchmark, The Semantic Web–ISWC 2014 (Springer, New York, 2014), pp. 33–48

    Google Scholar 

  12. M. Cheatham, P. Hitzler, The properties of property alignment, in Proceedings of the 9th International Conference on Ontology Matching-Volume 1317 (2014), pp. 13–24. http://CEUR-WS.org

  13. M. Cheatham, Z. Dragisic, J. Euzenat, D. Faria, A. Ferrara, G. Flouris, I. Fundulaki, R. Granada, V. Ivanova, E. Jiménez-Ruiz et al., Results of the ontology alignment evaluation initiative 2015, in 10th ISWC Workshop on Ontology Matching (OM) (2015), pp. 60–115 (No commercial editor)

    Google Scholar 

  14. R. Cornet, N. de Keizer, Forty years of SNOMED: a literature review. BMC Med. Inform. Decision Mak. 8(Suppl 1), S2 (2008)

    Article  Google Scholar 

  15. I.F. Cruz, F.P. Antonelli, C. Stroe, Agreementmaker: efficient matching for large real-world schemas and ontologies. Proc. VLDB Endow. 2(2), 1586–1589 (2009)

    Article  Google Scholar 

  16. I.F. Cruz, C. Stroe, C. Pesquita, F.M. Couto, V. Cross, Biomedical ontology matching using the agreementmaker system, in ICBO (2011)

    Google Scholar 

  17. I.F. Cruz, C. Stroe, M. Palmonari, Interactive user feedback in ontology matching using signature vectors, in IEEE 28th International Conference on Data Engineering (ICDE) (IEEE, 2012), pp. 1321–1324

    Google Scholar 

  18. B. Di Martino, Semantic web services discovery based on structural ontology matching. Int. J. Web Grid Serv. 5(1), 46–65 (2009)

    Article  Google Scholar 

  19. Z. Dragisic, K. Eckert, J. Euzenat, D. Faria, A. Ferrara, R. Granada, V. Ivanova, E. Jiménez-Ruiz, A.O. Kempf, P. Lambrix et al., Results of the ontology alignment evaluation initiative 2014, in Proceedings of the 9th International Conference on Ontology Matching-Volume 1317 (2014), pp. 61–104. http://CEUR-WS.org

  20. S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas, M.J. Ward, Instance-based matching of large ontologies using locality-sensitive hashing, The Semantic Web–ISWC 2012 (Springer, New York, 2012), pp. 49–64

    Google Scholar 

  21. A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, Duplicate record detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

    Article  Google Scholar 

  22. J. Euzenat, Brief overview of t-tree: the tropes taxonomy building tool. Adv. Classif. Res. Online 4(1), 69–88 (1993)

    Google Scholar 

  23. J. Euzenat, P. Shvaiko, Ontology Matching, vol. 18 (Springer, Heidelberg, 2007)

    MATH  Google Scholar 

  24. J. Euzenat, C. Meilicke, H. Stuckenschmidt, P. Shvaiko, C. Trojahn, Ontology alignment evaluation initiative: six years of experience, Journal on Data Semantics XV (Springer, New York, 2011), pp. 158–192

    Google Scholar 

  25. S.M. Falconer, M.-A. Storey, A Cognitive Support Framework for Ontology Mapping (Springer, New York, 2007)

    Google Scholar 

  26. Z. Fan, S. Zlatanova, Exploring ontologies for semantic interoperability of data in emergency response. Appl. Geomat. 3(2), 109–122 (2011)

    Article  Google Scholar 

  27. D. Faria, C. Pesquita, E. Santos, M. Palmonari, I.F. Cruz, F.M. Couto, The agreementmakerlight ontology matching system, On the Move to Meaningful Internet Systems: OTM 2013 Conferences (Springer, New York, 2013), pp. 527–541

    Google Scholar 

  28. D. Faria, E. Jiménez-Ruiz, C. Pesquita, E. Santos, F.M. Couto, Towards annotating potential incoherences in bioportal mappings, The Semantic Web–ISWC 2014 (Springer, New York, 2014), pp. 17–32

    Google Scholar 

  29. D. Faria, C. Pesquita, E. Santos, I.F. Cruz, F.M. Couto, Automatic background knowledge selection for matching biomedical ontologies. PloS One 9(11), e111226 (2014)

    Article  Google Scholar 

  30. I.P. Fellegi, A.B. Sunter, A theory for record linkage. J. Am. Stat. Assoc. 64(328), 1183–1210 (1969)

    Article  MATH  Google Scholar 

  31. B. Gallagher, Matching structure and semantics: a survey on graph-based pattern matching. AAAI FS 6, 45–53 (2006)

    Google Scholar 

  32. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, L. Schneider, Sweetening ontologies with DOLCE, Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web (Springer, New York, 2002), pp. 166–181

    Google Scholar 

  33. M. Granitzer, V. Sabol, K.W. Onn, D. Lukose, K. Tochtermann, Ontology alignment a survey with focus on visually supported semi-automatic techniques. Future Internet 2(3), 238–258 (2010)

    Article  Google Scholar 

  34. B.C. Grau, Z. Dragisic, K. Eckert, J. Euzenat, A. Ferrara, R. Granada, V. Ivanova, E. Jiménez-Ruiz, A.O. Kempf, P. Lambrix et al., Results of the ontology alignment evaluation initiative 2013, in Proceedings of the 8th International Conference on Ontology Matching-Volume 1111 (2013), pp. 61–100. http://CEUR-WS.org

  35. T.R. Gruber, A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  36. K. Gunaratna, K. Thirunarayan, P. Jain, A. Sheth, S. Wijeratne, A statistical and schema independent approach to identify equivalent properties on linked data, in Proceedings of the 9th International Conference on Semantic Systems (ACM, New York, 2013), pp. 33–40

    Google Scholar 

  37. H. Halpin, P.J. Hayes, When owl: sameas isn’t the same: an analysis of identity links on the semantic web, in LDOW (2010)

    Google Scholar 

  38. F. Hamdi, B. Safar, N.B. Niraula, C. Reynaud, Taxomap alignment and refinement modules: results for OAEI 2010, in Proceedings of the 5th International Workshop on Ontology Matching (OM-2010) Collocated with the 9th International Semantic Web Conference (ISWC-2010), CEUR-WS (2010), pp. 212–220

    Google Scholar 

  39. M. Hartung, A. Gross, T. Kirsten, E. Rahm, Effective mapping composition for biomedical ontologies, in Proceedings of Semantic Interoperability in Medical Informatics (SIMI-12), Workshop at ESWC, vol. 12 (2012)

    Google Scholar 

  40. M. Hartung, L. Kolb, A. Groß, E. Rahm, Optimizing similarity computations for ontology matching-experiences from gomma, in Data Integration in the Life Sciences (Springer, New York, 2013), pp. 81–89

    Google Scholar 

  41. P. Hitzler, M. Krotzsch, S. Rudolph, Foundations of Semantic Web Technologies (CRC Press, Boca Raton, 2011)

    Google Scholar 

  42. R. Hoehndorf, M. Dumontier, A. Oellrich, D. Rebholz-Schuhmann, P.N. Schofield, G.V. Gkoutos, Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning. PloS One 6(7), e22006 (2011)

    Article  Google Scholar 

  43. Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg-Cross, P. Hitzler, M. Dean, D. Kolas, A geo-ontology design pattern for semantic trajectories, Spatial Information Theory (Springer, New York, 2013), pp. 438–456

    Google Scholar 

  44. P.G. Ipeirotis, Demographics of mechanical turk (2010)

    Google Scholar 

  45. V. Ivanova, P. Lambrix, J. Åberg, Requirements for and evaluation of user support for large-scale ontology alignment, The Semantic Web. Latest Advances and New Domains (Springer, New York, 2015), pp. 3–20

    Google Scholar 

  46. P. Jain, P. Hitzler, A.P. Sheth, K. Verma, P.Z. Yeh, Ontology alignment for linked open data, The Semantic Web–ISWC 2010 (Springer, New York, 2010), pp. 402–417

    Google Scholar 

  47. K. Janowicz, M. Compton, The stimulus-sensor-observation ontology design pattern and its integration into the semantic sensor network ontology, in Proceedings of the 3rd International Conference on Semantic Sensor Networks-Volume 668 (2010), pp. 64–78. http://CEUR-WS.org

  48. E. Jiménez-Ruiz, B.C. Grau, Logmap: logic-based and scalable ontology matching, The Semantic Web–ISWC 2011 (Springer, New York, 2011), pp. 273–288

    Google Scholar 

  49. E. Jiménez-Ruiz, B.C. Grau, I. Horrocks, R.B. Llavori, Logic-based ontology integration using contentmap, in JISBD (Citeseer, 2009), pp. 316–319

    Google Scholar 

  50. E. Jiménez-Ruiz, B.C. Grau, Y. Zhou, I. Horrocks, Large-scale interactive ontology matching: algorithms and implementation. ECAI 242, 444–449 (2012)

    MATH  Google Scholar 

  51. E. Jiménez-Ruiz, C. Meilicke, B.C. Grau, I. Horrocks, Evaluating mapping repair systems with large biomedical ontologies

    Google Scholar 

  52. N. Kheder, G. Diallo, ServOMBI at OAEI (2015)

    Google Scholar 

  53. W.O. Kow, V. Sabol, M. Granitzer, W. Kienrich, D. Lukose, A visual SOA-based ontology alignment tool, in Proceedings of the Sixth International Workshop on Ontology Matching (OM 2011), vol. 10 (2011)

    Google Scholar 

  54. K. Kyzirakos, M. Karpathiotakis, G. Garbis, C. Nikolaou, K. Bereta, I. Papoutsis, T. Herekakis, D. Michail, M. Koubarakis, C. Kontoes, Wildfire monitoring using satellite images, ontologies and linked geospatial data. Web Semant. Sci. Serv. Agents World Wide Web 24, 18–26 (2014)

    Article  Google Scholar 

  55. P. Lambrix, A. Edberg, Evaluation of ontology merging tools in bioinformatics. Pac. Symp. Biocomput. 8, 589–600 (2003)

    MATH  Google Scholar 

  56. P. Lambrixa, R. Kaliyaperumalb, A session-based ontology alignment approach for aligning large ontologies

    Google Scholar 

  57. M. Lanzenberger, J. Sampson, AIViz-a tool for visual ontology alignment, in Tenth International Conference on Information Visualization, IV 2006 (IEEE, 2006), pp. 430–440

    Google Scholar 

  58. L. Li, X. Xing, H. Xia, X. Huang, Entropy-weighted instance matching between different sourcing points of interest. Entropy 18(2), 45 (2016)

    Article  Google Scholar 

  59. V. Lush, L. Bastin, J. Lumsden, Geospatial data quality indicators (2012)

    Google Scholar 

  60. R. McCann, W. Shen, A. Doan, Matching schemas in online communities: a web 2.0 approach, in IEEE 24th International Conference on Data Engineering, ICDE, 2008 (IEEE, 2008), pp. 110–119

    Google Scholar 

  61. G. McKenzie, K. Janowicz, B. Adams, A weighted multi-attribute method for matching user-generated points of interest. Cartogr. Geogr. Inf. Sci. 41(2), 125–137 (2014)

    Article  Google Scholar 

  62. C. Meilicke, Alignment incoherence in ontology matching. Ph.D. thesis, Universitätsbibliothek Mannheim (2011)

    Google Scholar 

  63. S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In 18th International Conference on Data Engineering, Proceedings (IEEE, 2002), pp. 117–128

    Google Scholar 

  64. V. Momtchev, D. Peychev, T. Primov, G. Georgiev, Expanding the pathway and interaction knowledge in linked life data, in Proceedings of International Semantic Web Challenge (2009)

    Google Scholar 

  65. P. Mooney, P. Corcoran, A.C. Winstanley, Towards quality metrics for openstreetmap, in Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM, New York, 2010), pp. 514–517

    Google Scholar 

  66. J.M. Mortensen, Crowdsourcing ontology verification, The Semantic Web–ISWC 2013 (Springer, New York, 2013), pp. 448–455

    Google Scholar 

  67. J.M. Mortensen, M.A. Musen, N.F. Noy, Crowdsourcing the verification of relationships in biomedical ontologies, in AMIA Annual Symposium (Submitted, 2013) (2013)

    Google Scholar 

  68. J.M. Mortensen, M.A. Musen, N.F. Noy, Ontology quality assurance with the crowd, in First AAAI Conference on Human Computation and Crowdsourcing (2013)

    Google Scholar 

  69. B. Motik, P.F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler et al., Owl 2 web ontology language: structural specification and functional-style syntax. W3C Recomm. 27(65), 159 (2009)

    Google Scholar 

  70. C.J. Mungall, Obol: integrating language and meaning in bio-ontologies. Comp. Funct. Genomics 5(6–7), 509–520 (2004)

    Article  Google Scholar 

  71. C.J. Mungall, G.V. Gkoutos, C.L. Smith, M.A. Haendel, S.E. Lewis, M. Ashburner, Integrating phenotype ontologies across multiple species. Genome Biol. 11(1), R2 (2010)

    Article  Google Scholar 

  72. D. Ngo, Z. Bellahsene, Yam++: a multi-strategy based approach for ontology matching task, Knowledge Engineering and Knowledge Management (Springer, New York, 2012), pp. 421–425

    Google Scholar 

  73. A. Nikolov, M. dAquin, E. Motta, Unsupervised learning of link discovery configuration, The Semantic Web: Research and Applications (Springer, New York, 2012), pp. 119–133

    Google Scholar 

  74. N.F. Noy, C.D. Hafner, The state of the art in ontology design: a survey and comparative review. AI Mag. 18(3), 53 (1997)

    Google Scholar 

  75. N.F. Noy, N. Griffith, M.A. Musen, Collecting Community-Based Mappings in an Ontology Repository (Springer, New York, 2008)

    Google Scholar 

  76. N.F. Noy, N.H. Shah, P.L. Whetzel, B. Dai, M. Dorf, N. Griffith, C. Jonquet, D.L. Rubin, M.-A. Storey, C.G. Chute et al., Bioportal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. gkp440 (2009)

    Google Scholar 

  77. N.F. Noy, J. Mortensen, M.A. Musen, P.R. Alexander, Mechanical turk as an ontology engineer?: using microtasks as a component of an ontology-engineering workflow, in Proceedings of the 5th Annual ACM Web Science Conference (ACM, New York, 2013), pp. 262–271

    Google Scholar 

  78. D.J. Odgers, M. Dumontier, Mining electronic health records using linked data. AMIA Summits Transl. Sci. Proc. 2015, 217 (2015)

    Google Scholar 

  79. D. Oliveira, C. Pesquita, Compound matching of biomedical ontologies. Proc. Int. Conf. Biomed. Ontol. 2015, 87–88 (2015)

    Google Scholar 

  80. J. Ortmann, M. Limbu, D. Wang, T. Kauppinen, Crowdsourcing linked open data for disaster management, in Proceedings of the Terra Cognita Workshop on Foundations, Technologies and Applications of the Geospatial Web in conjunction with the ISWC (Citeseer, 2011), pp. 11–22

    Google Scholar 

  81. H. Paulheim, S. Hertling, D. Ritze, Towards evaluating interactive ontology matching tools, The Semantic Web: Semantics and Big Data (Springer, New York, 2013), pp. 31–45

    Google Scholar 

  82. A. Pease, I. Niles, J. Li, The suggested upper merged ontology: a large ontology for the semantic web and its applications, in Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28 (2002)

    Google Scholar 

  83. C. Pesquita, D. Faria, E. Santos, F.M. Couto, To repair or not to repair: reconciling correctness and coherence in ontology reference alignments, in OM (2013), pp. 13–24

    Google Scholar 

  84. C. Pesquita, D. Faria, C. Stroe, E. Santos, I.F. Cruz, F.M. Couto, Whats in a nym? Synonyms in biomedical ontology matching, The Semantic Web–ISWC 2013 (Springer, New York, 2013), pp. 526–541

    Google Scholar 

  85. C. Pesquita, D. Faria, E. Santos, J.-M. Neefs, F.M. Couto, Towards visualizing the alignment of large biomedical ontologies, Data Integration in the Life Sciences (Springer, New York, 2014), pp. 104–111

    Google Scholar 

  86. R.G. Raskin, M.J. Pan, Knowledge representation in the semantic web for earth and environmental terminology (sweet). Comput. Geosci. 31(9), 1119–1125 (2005)

    Article  Google Scholar 

  87. S. Rong, X. Niu, E.W. Xiang, H. Wang, Q. Yang, Y. Yu, A machine learning approach for instance matching based on similarity metrics, The Semantic Web–ISWC 2012 (Springer, New York, 2012), pp. 460–475

    Google Scholar 

  88. A. Ruttenberg, J.A. Rees, M. Samwald, M.S. Marshall, Life sciences on the semantic web: the neurocommons and beyond. Brief. Bioinform. bbp004 (2009)

    Google Scholar 

  89. M. Salvadores, P.R. Alexander, M.A. Musen, N.F. Noy, Bioportal as a dataset of linked biomedical ontologies and terminologies in RDF. Semant. Web 4(3), 277–284 (2013)

    Google Scholar 

  90. E. Santos, D. Faria, C. Pesquita, F. Couto, Ontology alignment repair through modularization and confidence-based heuristics (2013). arXiv:1307.5322

  91. E. Santos, D. Faria, C. Pesquita, F.M. Couto, Ontology alignment repair through modularization and confidence-based heuristics. PloS One 10(12) (2015)

    Google Scholar 

  92. C. Sarasua, E. Simperl, N.F. Noy, Crowdmap: crowdsourcing ontology alignment with microtasks, The Semantic Web–ISWC 2012 (Springer, New York, 2012), pp. 525–541

    Google Scholar 

  93. M. Schmachtenberg, C. Bizer, A. Jentzsch, R. Cyganiak, Linking open data cloud diagram (2014)

    Google Scholar 

  94. L.M. Schriml, C. Arze, S. Nadendla, Y.-W.W. Chang, M. Mazaitis, V. Felix, G. Feng, W.A. Kibbe, Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012)

    Article  Google Scholar 

  95. V. Sehgal, L. Getoor, P.D. Viechnicki, Entity resolution in geospatial data integration, in Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems (ACM, New York, 2006), pp. 83–90

    Google Scholar 

  96. B. Severo, C. Trojahn, R. Vieira, VOAR: a visual and integrated ontology alignment environment (2014)

    Google Scholar 

  97. A. Shepherd, C. Chandler, R. Arko, Y. Chen, A. Krisnadhi, P. Hitzler, T. Narock, R. Groman, S. Rauch, Semantic entity pairing for improved data validation and discovery, EGU General Assembly Conference Abstracts, vol. 16 (2014), p. 2476

    Google Scholar 

  98. H. Shi, K. Maly, S. Zeil, M. Zubair, Comparison of ontology reasoning systems using custom rules, in Proceedings of the International Conference on Web Intelligence, Mining and Semantics (ACM, 2011), p. 16

    Google Scholar 

  99. K. Siorpaes, M. Hepp, Ontogame: Weaving the Semantic Web by Online Games (Springer, New York, 2008)

    Google Scholar 

  100. S. Sizov, Geofolk: latent spatial semantics in web 2.0 social media, in Proceedings of the Third ACM International Conference on Web Search and Data Mining (ACM, 2010), pp. 281–290

    Google Scholar 

  101. B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L.J. Goldberg, K. Eilbeck, A. Ireland, C.J. Mungall et al., The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255 (2007)

    Article  Google Scholar 

  102. V. Spiliopoulos, G.A. Vouros, V. Karkaletsis, On the discovery of subsumption relations for the alignment of ontologies. Web Semant. Sci. Serv. Agents World Wide Web 8(1), 69–88 (2010)

    Article  Google Scholar 

  103. H. Stuckenschmidt, J. Noessner, F. Fallahi, A study in user-centric data integration. ICEIS 3, 5–14 (2012)

    Google Scholar 

  104. F.M. Suchanek, S. Abiteboul, P. Senellart, Paris: probabilistic alignment of relations, instances, and schema. Proc. VLDB Endow. 5(3), 157–168 (2011)

    Article  Google Scholar 

  105. Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, D. Oberle, The SWRC ontology–semantic web for research communities, Progress in Artificial Intelligence (Springer, New York, 2005), pp. 218–231

    Google Scholar 

  106. V. Svátek, O. Šváb-Zamazal, V. Presutti, Ontology naming pattern sauce for (human and computer) gourmets, in Workshop on Ontology Patterns (2009), pp. 171–178

    Google Scholar 

  107. J.M. Taylor, D. Poliakov, L.J. Mazlack, Domain-specific ontology merging for the semantic web, Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the North American (IEEE, 2005), pp. 418–423

    Google Scholar 

  108. S. Thakkar, C.A. Knoblock, J.L. Ambite, Quality-driven geospatial data integration, in Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems (ACM, 2007), p. 16

    Google Scholar 

  109. S. Thaler, E.P.B. Simperl, K. Siorpaes, Spotthelink: a game for ontology alignment. Wissensmanagement 182, 246–253 (2011)

    Google Scholar 

  110. S. Tschirner, A. Scherp, S. Staab, Semantic access to inspire, in Terra Cognita 2011 Workshop Foundations, Technologies and Applications of the Geospatial Web (Citeseer, 2011), p. 75

    Google Scholar 

  111. E. Voyloshnikova, B. Fu, L. Grammel, M.-A.D. Storey, Biomixer: visualizing mappings of biomedical ontologies, in ICBO (2012)

    Google Scholar 

  112. A.J. Williams, L. Harland, P. Groth, S. Pettifer, C. Chichester, E.L. Willighagen, C.T. Evelo, N. Blomberg, G. Ecker, C. Goble et al., Open phacts: semantic interoperability for drug discovery. Drug Discov. Today 17(21), 1188–1198 (2012)

    Article  Google Scholar 

  113. A. Wu, X. Lopez, Building enterprise applications with oracle database 11g semantic technologies, Presentation at Semantic Technologies Conference (San Jose, 2009)

    Google Scholar 

  114. T. Zhao, C. Zhang, M. Wei, Z.-R. Peng, Ontology-based geospatial data query and integration, Geographic Information Science (Springer, New York, 2008), pp. 370–392

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation award 1440202 GeoLink - Leveraging Semantics and Linked Data for Data Sharing and Discovery in the Geosciences. It was also partially supported by Fundaç ão para a Ciência e Tecnologia (PTDC/EEI-ESS/4633/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Cheatham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cheatham, M., Pesquita, C. (2017). Semantic Data Integration. In: Zomaya, A., Sakr, S. (eds) Handbook of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-49340-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49340-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49339-8

  • Online ISBN: 978-3-319-49340-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics