Abstract
The growing volume, variety and complexity of data being collected for scientific purposes presents challenges for data integration. For data to be truly useful, scientists need not only to be able to access it, but also be able to interpret and use it. Doing this requires semantic context. Semantic Data Integration is an active field of research, and this chapter describes the current challenges and how existing approaches are addressing them. The chapter then provides an overview of several active research areas within the semantic data integration field, including interactive and collaborative schema matching, integration of geospatial and biomedical data, and visualization of the data integration process. Finally, the need to move beyond the discovery of simple 1-to-1 equivalence matches to the identification of more complex relationships across datasets is presented and possible first steps in this direction are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
References
M.R. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M.J. Cafarella, A. Kumar, F. Niu, Y. Park, C. Ré, C. Zhang, Brainwash: a data system for feature engineering, in CIDR (2013)
M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig et al., Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)
K. Baclawski, C.J. Matheus, M.M. Kokar, J. Letkowski, P.A. Kogut, Towards a symptom ontology for semantic web applications, The Semantic Web–ISWC 2004 (Springer, New York, 2004), pp. 650–667
A. Ballatore, A. Zipf, A conceptual quality framework for volunteered geographic information, Spatial Information Theory (Springer, New York, 2015), pp. 89–107
T. Berners-Lee, J. Hendler, O. Lassila et al., The semantic web. Sci. Am. 284(5), 28–37 (2001)
O. Bodenreider, The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)
A.T. Boin, G.J. Hunter, Do spatial data consumers really understand data quality information, in 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences (Citeseer, 2006), pp. 215–224
A. Callahan, J. Cruz-Toledo, P. Ansell, M. Dumontier, Bio2RDF release 2: improved coverage, interoperability and provenance of life science linked data, The Semantic Web: Semantics and Big Data (Springer, New York, 2013), pp. 200–212
S. Castano, A. Ferrara, S. Montanelli, G. Varese, Ontology and instance matching, Knowledge-Driven Multimedia Information Extraction and Ontology Evolution (Springer, New York, 2011), pp. 167–195
M. Cheatham, P. Hitzler, String similarity metrics for ontology alignment, The Semantic Web–ISWC 2013 (Springer, New York, 2013), pp. 294–309
M. Cheatham, P. Hitzler, Conference v2. 0: an uncertain version of the OAEI conference benchmark, The Semantic Web–ISWC 2014 (Springer, New York, 2014), pp. 33–48
M. Cheatham, P. Hitzler, The properties of property alignment, in Proceedings of the 9th International Conference on Ontology Matching-Volume 1317 (2014), pp. 13–24. http://CEUR-WS.org
M. Cheatham, Z. Dragisic, J. Euzenat, D. Faria, A. Ferrara, G. Flouris, I. Fundulaki, R. Granada, V. Ivanova, E. Jiménez-Ruiz et al., Results of the ontology alignment evaluation initiative 2015, in 10th ISWC Workshop on Ontology Matching (OM) (2015), pp. 60–115 (No commercial editor)
R. Cornet, N. de Keizer, Forty years of SNOMED: a literature review. BMC Med. Inform. Decision Mak. 8(Suppl 1), S2 (2008)
I.F. Cruz, F.P. Antonelli, C. Stroe, Agreementmaker: efficient matching for large real-world schemas and ontologies. Proc. VLDB Endow. 2(2), 1586–1589 (2009)
I.F. Cruz, C. Stroe, C. Pesquita, F.M. Couto, V. Cross, Biomedical ontology matching using the agreementmaker system, in ICBO (2011)
I.F. Cruz, C. Stroe, M. Palmonari, Interactive user feedback in ontology matching using signature vectors, in IEEE 28th International Conference on Data Engineering (ICDE) (IEEE, 2012), pp. 1321–1324
B. Di Martino, Semantic web services discovery based on structural ontology matching. Int. J. Web Grid Serv. 5(1), 46–65 (2009)
Z. Dragisic, K. Eckert, J. Euzenat, D. Faria, A. Ferrara, R. Granada, V. Ivanova, E. Jiménez-Ruiz, A.O. Kempf, P. Lambrix et al., Results of the ontology alignment evaluation initiative 2014, in Proceedings of the 9th International Conference on Ontology Matching-Volume 1317 (2014), pp. 61–104. http://CEUR-WS.org
S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas, M.J. Ward, Instance-based matching of large ontologies using locality-sensitive hashing, The Semantic Web–ISWC 2012 (Springer, New York, 2012), pp. 49–64
A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, Duplicate record detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
J. Euzenat, Brief overview of t-tree: the tropes taxonomy building tool. Adv. Classif. Res. Online 4(1), 69–88 (1993)
J. Euzenat, P. Shvaiko, Ontology Matching, vol. 18 (Springer, Heidelberg, 2007)
J. Euzenat, C. Meilicke, H. Stuckenschmidt, P. Shvaiko, C. Trojahn, Ontology alignment evaluation initiative: six years of experience, Journal on Data Semantics XV (Springer, New York, 2011), pp. 158–192
S.M. Falconer, M.-A. Storey, A Cognitive Support Framework for Ontology Mapping (Springer, New York, 2007)
Z. Fan, S. Zlatanova, Exploring ontologies for semantic interoperability of data in emergency response. Appl. Geomat. 3(2), 109–122 (2011)
D. Faria, C. Pesquita, E. Santos, M. Palmonari, I.F. Cruz, F.M. Couto, The agreementmakerlight ontology matching system, On the Move to Meaningful Internet Systems: OTM 2013 Conferences (Springer, New York, 2013), pp. 527–541
D. Faria, E. Jiménez-Ruiz, C. Pesquita, E. Santos, F.M. Couto, Towards annotating potential incoherences in bioportal mappings, The Semantic Web–ISWC 2014 (Springer, New York, 2014), pp. 17–32
D. Faria, C. Pesquita, E. Santos, I.F. Cruz, F.M. Couto, Automatic background knowledge selection for matching biomedical ontologies. PloS One 9(11), e111226 (2014)
I.P. Fellegi, A.B. Sunter, A theory for record linkage. J. Am. Stat. Assoc. 64(328), 1183–1210 (1969)
B. Gallagher, Matching structure and semantics: a survey on graph-based pattern matching. AAAI FS 6, 45–53 (2006)
A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, L. Schneider, Sweetening ontologies with DOLCE, Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web (Springer, New York, 2002), pp. 166–181
M. Granitzer, V. Sabol, K.W. Onn, D. Lukose, K. Tochtermann, Ontology alignment a survey with focus on visually supported semi-automatic techniques. Future Internet 2(3), 238–258 (2010)
B.C. Grau, Z. Dragisic, K. Eckert, J. Euzenat, A. Ferrara, R. Granada, V. Ivanova, E. Jiménez-Ruiz, A.O. Kempf, P. Lambrix et al., Results of the ontology alignment evaluation initiative 2013, in Proceedings of the 8th International Conference on Ontology Matching-Volume 1111 (2013), pp. 61–100. http://CEUR-WS.org
T.R. Gruber, A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)
K. Gunaratna, K. Thirunarayan, P. Jain, A. Sheth, S. Wijeratne, A statistical and schema independent approach to identify equivalent properties on linked data, in Proceedings of the 9th International Conference on Semantic Systems (ACM, New York, 2013), pp. 33–40
H. Halpin, P.J. Hayes, When owl: sameas isn’t the same: an analysis of identity links on the semantic web, in LDOW (2010)
F. Hamdi, B. Safar, N.B. Niraula, C. Reynaud, Taxomap alignment and refinement modules: results for OAEI 2010, in Proceedings of the 5th International Workshop on Ontology Matching (OM-2010) Collocated with the 9th International Semantic Web Conference (ISWC-2010), CEUR-WS (2010), pp. 212–220
M. Hartung, A. Gross, T. Kirsten, E. Rahm, Effective mapping composition for biomedical ontologies, in Proceedings of Semantic Interoperability in Medical Informatics (SIMI-12), Workshop at ESWC, vol. 12 (2012)
M. Hartung, L. Kolb, A. Groß, E. Rahm, Optimizing similarity computations for ontology matching-experiences from gomma, in Data Integration in the Life Sciences (Springer, New York, 2013), pp. 81–89
P. Hitzler, M. Krotzsch, S. Rudolph, Foundations of Semantic Web Technologies (CRC Press, Boca Raton, 2011)
R. Hoehndorf, M. Dumontier, A. Oellrich, D. Rebholz-Schuhmann, P.N. Schofield, G.V. Gkoutos, Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning. PloS One 6(7), e22006 (2011)
Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg-Cross, P. Hitzler, M. Dean, D. Kolas, A geo-ontology design pattern for semantic trajectories, Spatial Information Theory (Springer, New York, 2013), pp. 438–456
P.G. Ipeirotis, Demographics of mechanical turk (2010)
V. Ivanova, P. Lambrix, J. Åberg, Requirements for and evaluation of user support for large-scale ontology alignment, The Semantic Web. Latest Advances and New Domains (Springer, New York, 2015), pp. 3–20
P. Jain, P. Hitzler, A.P. Sheth, K. Verma, P.Z. Yeh, Ontology alignment for linked open data, The Semantic Web–ISWC 2010 (Springer, New York, 2010), pp. 402–417
K. Janowicz, M. Compton, The stimulus-sensor-observation ontology design pattern and its integration into the semantic sensor network ontology, in Proceedings of the 3rd International Conference on Semantic Sensor Networks-Volume 668 (2010), pp. 64–78. http://CEUR-WS.org
E. Jiménez-Ruiz, B.C. Grau, Logmap: logic-based and scalable ontology matching, The Semantic Web–ISWC 2011 (Springer, New York, 2011), pp. 273–288
E. Jiménez-Ruiz, B.C. Grau, I. Horrocks, R.B. Llavori, Logic-based ontology integration using contentmap, in JISBD (Citeseer, 2009), pp. 316–319
E. Jiménez-Ruiz, B.C. Grau, Y. Zhou, I. Horrocks, Large-scale interactive ontology matching: algorithms and implementation. ECAI 242, 444–449 (2012)
E. Jiménez-Ruiz, C. Meilicke, B.C. Grau, I. Horrocks, Evaluating mapping repair systems with large biomedical ontologies
N. Kheder, G. Diallo, ServOMBI at OAEI (2015)
W.O. Kow, V. Sabol, M. Granitzer, W. Kienrich, D. Lukose, A visual SOA-based ontology alignment tool, in Proceedings of the Sixth International Workshop on Ontology Matching (OM 2011), vol. 10 (2011)
K. Kyzirakos, M. Karpathiotakis, G. Garbis, C. Nikolaou, K. Bereta, I. Papoutsis, T. Herekakis, D. Michail, M. Koubarakis, C. Kontoes, Wildfire monitoring using satellite images, ontologies and linked geospatial data. Web Semant. Sci. Serv. Agents World Wide Web 24, 18–26 (2014)
P. Lambrix, A. Edberg, Evaluation of ontology merging tools in bioinformatics. Pac. Symp. Biocomput. 8, 589–600 (2003)
P. Lambrixa, R. Kaliyaperumalb, A session-based ontology alignment approach for aligning large ontologies
M. Lanzenberger, J. Sampson, AIViz-a tool for visual ontology alignment, in Tenth International Conference on Information Visualization, IV 2006 (IEEE, 2006), pp. 430–440
L. Li, X. Xing, H. Xia, X. Huang, Entropy-weighted instance matching between different sourcing points of interest. Entropy 18(2), 45 (2016)
V. Lush, L. Bastin, J. Lumsden, Geospatial data quality indicators (2012)
R. McCann, W. Shen, A. Doan, Matching schemas in online communities: a web 2.0 approach, in IEEE 24th International Conference on Data Engineering, ICDE, 2008 (IEEE, 2008), pp. 110–119
G. McKenzie, K. Janowicz, B. Adams, A weighted multi-attribute method for matching user-generated points of interest. Cartogr. Geogr. Inf. Sci. 41(2), 125–137 (2014)
C. Meilicke, Alignment incoherence in ontology matching. Ph.D. thesis, Universitätsbibliothek Mannheim (2011)
S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In 18th International Conference on Data Engineering, Proceedings (IEEE, 2002), pp. 117–128
V. Momtchev, D. Peychev, T. Primov, G. Georgiev, Expanding the pathway and interaction knowledge in linked life data, in Proceedings of International Semantic Web Challenge (2009)
P. Mooney, P. Corcoran, A.C. Winstanley, Towards quality metrics for openstreetmap, in Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM, New York, 2010), pp. 514–517
J.M. Mortensen, Crowdsourcing ontology verification, The Semantic Web–ISWC 2013 (Springer, New York, 2013), pp. 448–455
J.M. Mortensen, M.A. Musen, N.F. Noy, Crowdsourcing the verification of relationships in biomedical ontologies, in AMIA Annual Symposium (Submitted, 2013) (2013)
J.M. Mortensen, M.A. Musen, N.F. Noy, Ontology quality assurance with the crowd, in First AAAI Conference on Human Computation and Crowdsourcing (2013)
B. Motik, P.F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler et al., Owl 2 web ontology language: structural specification and functional-style syntax. W3C Recomm. 27(65), 159 (2009)
C.J. Mungall, Obol: integrating language and meaning in bio-ontologies. Comp. Funct. Genomics 5(6–7), 509–520 (2004)
C.J. Mungall, G.V. Gkoutos, C.L. Smith, M.A. Haendel, S.E. Lewis, M. Ashburner, Integrating phenotype ontologies across multiple species. Genome Biol. 11(1), R2 (2010)
D. Ngo, Z. Bellahsene, Yam++: a multi-strategy based approach for ontology matching task, Knowledge Engineering and Knowledge Management (Springer, New York, 2012), pp. 421–425
A. Nikolov, M. dAquin, E. Motta, Unsupervised learning of link discovery configuration, The Semantic Web: Research and Applications (Springer, New York, 2012), pp. 119–133
N.F. Noy, C.D. Hafner, The state of the art in ontology design: a survey and comparative review. AI Mag. 18(3), 53 (1997)
N.F. Noy, N. Griffith, M.A. Musen, Collecting Community-Based Mappings in an Ontology Repository (Springer, New York, 2008)
N.F. Noy, N.H. Shah, P.L. Whetzel, B. Dai, M. Dorf, N. Griffith, C. Jonquet, D.L. Rubin, M.-A. Storey, C.G. Chute et al., Bioportal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. gkp440 (2009)
N.F. Noy, J. Mortensen, M.A. Musen, P.R. Alexander, Mechanical turk as an ontology engineer?: using microtasks as a component of an ontology-engineering workflow, in Proceedings of the 5th Annual ACM Web Science Conference (ACM, New York, 2013), pp. 262–271
D.J. Odgers, M. Dumontier, Mining electronic health records using linked data. AMIA Summits Transl. Sci. Proc. 2015, 217 (2015)
D. Oliveira, C. Pesquita, Compound matching of biomedical ontologies. Proc. Int. Conf. Biomed. Ontol. 2015, 87–88 (2015)
J. Ortmann, M. Limbu, D. Wang, T. Kauppinen, Crowdsourcing linked open data for disaster management, in Proceedings of the Terra Cognita Workshop on Foundations, Technologies and Applications of the Geospatial Web in conjunction with the ISWC (Citeseer, 2011), pp. 11–22
H. Paulheim, S. Hertling, D. Ritze, Towards evaluating interactive ontology matching tools, The Semantic Web: Semantics and Big Data (Springer, New York, 2013), pp. 31–45
A. Pease, I. Niles, J. Li, The suggested upper merged ontology: a large ontology for the semantic web and its applications, in Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28 (2002)
C. Pesquita, D. Faria, E. Santos, F.M. Couto, To repair or not to repair: reconciling correctness and coherence in ontology reference alignments, in OM (2013), pp. 13–24
C. Pesquita, D. Faria, C. Stroe, E. Santos, I.F. Cruz, F.M. Couto, Whats in a nym? Synonyms in biomedical ontology matching, The Semantic Web–ISWC 2013 (Springer, New York, 2013), pp. 526–541
C. Pesquita, D. Faria, E. Santos, J.-M. Neefs, F.M. Couto, Towards visualizing the alignment of large biomedical ontologies, Data Integration in the Life Sciences (Springer, New York, 2014), pp. 104–111
R.G. Raskin, M.J. Pan, Knowledge representation in the semantic web for earth and environmental terminology (sweet). Comput. Geosci. 31(9), 1119–1125 (2005)
S. Rong, X. Niu, E.W. Xiang, H. Wang, Q. Yang, Y. Yu, A machine learning approach for instance matching based on similarity metrics, The Semantic Web–ISWC 2012 (Springer, New York, 2012), pp. 460–475
A. Ruttenberg, J.A. Rees, M. Samwald, M.S. Marshall, Life sciences on the semantic web: the neurocommons and beyond. Brief. Bioinform. bbp004 (2009)
M. Salvadores, P.R. Alexander, M.A. Musen, N.F. Noy, Bioportal as a dataset of linked biomedical ontologies and terminologies in RDF. Semant. Web 4(3), 277–284 (2013)
E. Santos, D. Faria, C. Pesquita, F. Couto, Ontology alignment repair through modularization and confidence-based heuristics (2013). arXiv:1307.5322
E. Santos, D. Faria, C. Pesquita, F.M. Couto, Ontology alignment repair through modularization and confidence-based heuristics. PloS One 10(12) (2015)
C. Sarasua, E. Simperl, N.F. Noy, Crowdmap: crowdsourcing ontology alignment with microtasks, The Semantic Web–ISWC 2012 (Springer, New York, 2012), pp. 525–541
M. Schmachtenberg, C. Bizer, A. Jentzsch, R. Cyganiak, Linking open data cloud diagram (2014)
L.M. Schriml, C. Arze, S. Nadendla, Y.-W.W. Chang, M. Mazaitis, V. Felix, G. Feng, W.A. Kibbe, Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012)
V. Sehgal, L. Getoor, P.D. Viechnicki, Entity resolution in geospatial data integration, in Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems (ACM, New York, 2006), pp. 83–90
B. Severo, C. Trojahn, R. Vieira, VOAR: a visual and integrated ontology alignment environment (2014)
A. Shepherd, C. Chandler, R. Arko, Y. Chen, A. Krisnadhi, P. Hitzler, T. Narock, R. Groman, S. Rauch, Semantic entity pairing for improved data validation and discovery, EGU General Assembly Conference Abstracts, vol. 16 (2014), p. 2476
H. Shi, K. Maly, S. Zeil, M. Zubair, Comparison of ontology reasoning systems using custom rules, in Proceedings of the International Conference on Web Intelligence, Mining and Semantics (ACM, 2011), p. 16
K. Siorpaes, M. Hepp, Ontogame: Weaving the Semantic Web by Online Games (Springer, New York, 2008)
S. Sizov, Geofolk: latent spatial semantics in web 2.0 social media, in Proceedings of the Third ACM International Conference on Web Search and Data Mining (ACM, 2010), pp. 281–290
B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L.J. Goldberg, K. Eilbeck, A. Ireland, C.J. Mungall et al., The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255 (2007)
V. Spiliopoulos, G.A. Vouros, V. Karkaletsis, On the discovery of subsumption relations for the alignment of ontologies. Web Semant. Sci. Serv. Agents World Wide Web 8(1), 69–88 (2010)
H. Stuckenschmidt, J. Noessner, F. Fallahi, A study in user-centric data integration. ICEIS 3, 5–14 (2012)
F.M. Suchanek, S. Abiteboul, P. Senellart, Paris: probabilistic alignment of relations, instances, and schema. Proc. VLDB Endow. 5(3), 157–168 (2011)
Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, D. Oberle, The SWRC ontology–semantic web for research communities, Progress in Artificial Intelligence (Springer, New York, 2005), pp. 218–231
V. Svátek, O. Šváb-Zamazal, V. Presutti, Ontology naming pattern sauce for (human and computer) gourmets, in Workshop on Ontology Patterns (2009), pp. 171–178
J.M. Taylor, D. Poliakov, L.J. Mazlack, Domain-specific ontology merging for the semantic web, Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the North American (IEEE, 2005), pp. 418–423
S. Thakkar, C.A. Knoblock, J.L. Ambite, Quality-driven geospatial data integration, in Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems (ACM, 2007), p. 16
S. Thaler, E.P.B. Simperl, K. Siorpaes, Spotthelink: a game for ontology alignment. Wissensmanagement 182, 246–253 (2011)
S. Tschirner, A. Scherp, S. Staab, Semantic access to inspire, in Terra Cognita 2011 Workshop Foundations, Technologies and Applications of the Geospatial Web (Citeseer, 2011), p. 75
E. Voyloshnikova, B. Fu, L. Grammel, M.-A.D. Storey, Biomixer: visualizing mappings of biomedical ontologies, in ICBO (2012)
A.J. Williams, L. Harland, P. Groth, S. Pettifer, C. Chichester, E.L. Willighagen, C.T. Evelo, N. Blomberg, G. Ecker, C. Goble et al., Open phacts: semantic interoperability for drug discovery. Drug Discov. Today 17(21), 1188–1198 (2012)
A. Wu, X. Lopez, Building enterprise applications with oracle database 11g semantic technologies, Presentation at Semantic Technologies Conference (San Jose, 2009)
T. Zhao, C. Zhang, M. Wei, Z.-R. Peng, Ontology-based geospatial data query and integration, Geographic Information Science (Springer, New York, 2008), pp. 370–392
Acknowledgements
This work was supported in part by the National Science Foundation award 1440202 GeoLink - Leveraging Semantics and Linked Data for Data Sharing and Discovery in the Geosciences. It was also partially supported by Fundaç ão para a Ciência e Tecnologia (PTDC/EEI-ESS/4633/2014).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Cheatham, M., Pesquita, C. (2017). Semantic Data Integration. In: Zomaya, A., Sakr, S. (eds) Handbook of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-49340-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-49340-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49339-8
Online ISBN: 978-3-319-49340-4
eBook Packages: Computer ScienceComputer Science (R0)