Abstract
The importance role of contextual information on users’ daily decisions led to develop the new generation of recommender systems called Context-Aware Recommender Systems (CARSs). Dependency of users preferences on the context of entities (e.g., restaurant, road, weather) in a dynamic domain, make the recommendation arduous to properly meet the users preferences and gain high level of users’ satisfaction degree, especially in a group recommendation, in which several users need to take a joint decision. In these scenarios may also happen that some users have more weight/importance in the decision process. We propose a self-adaptive CARS (SaCARS) that provides fair services to a group of users who have different importance levels within their group Such services are recommended based on the conditional and qualitative preferences of the users that may change over time based on the different importance levels of the users in the group, on the context of the users, and the context of all the associated entities (e.g., restaurant, weather, other users) in the problem domain. In our framework we model users’ preferences via conditional preference networks (CP-nets) and Time, we adapt Hyperspace Analogue to Context (HAC) model to handle the multi-dimensional context into the system, and sequential voting rule is used to aggregate users’ preferences. We also evaluate the approach experimentally on a real-word scenario. Results show that it is promising.
F. Rossi—(on leave from University of Padova).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this paper we provide a revised and extended framework w.r.t. the one shown in [1]. We now assume that users can have different weights in the group and different priorities to order the features. Moreover, we evaluate the approach on real-data.
- 2.
In this study, Space refers to a domain where all entities have dependencies. For example, in the space of selecting a restaurant, users, road, restaurants and weather have relations that can influence users’ preferences.
- 3.
The bribery problem is defined by an external agent (the briber) who wants to influence the result of the rule by convincing some users to change their preferences, in order to get a collective result which is more preferred to him; there is usually a limited budget to be spent by the briber to convince the users [20].
References
Khoshkangini, R., Pini, M.S., Rossi, F.: A design of context-aware framework for conditional preferences of group of users. In: Lee, R. (ed.) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. SCI, vol. 653, pp. 97–112. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33810-1_8
De Gemmis, M., Iaquinta, L., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Preference learning in recommender systems. Prefer. Learn. 41 (2009)
Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application developments: a survey. Decis. Support Syst. 74, 12–32 (2015)
Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)
Ono, C., Kurokawa, M., Motomura, Y., Asoh, H.: A context-aware movie preference model using a Bayesian network for recommendation and promotion. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 247–257. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73078-1_28
Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application COMPASS. In: Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 235–244. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27780-4_27
Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S.: Context-driven personalized service discovery in pervasive environments. World Wide Web 14, 295–319 (2011)
Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)
Lichman, M.: UCI machine learning repository (2013)
Smaaberg, S.F., Shabib, N., Krogstie, J.: A user-study on context-aware group recommendation for concerts. In: HT (Doctoral Consortium/Late-breaking Results/Workshops) (2014)
Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)
Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. (TOIS) 23, 103–145 (2005)
Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: Workshop on Context-Aware Recommender Systems (CARS 2009) (2009)
Oku, K., et al.: A recommendation system considering users past/current/future contexts. In: Proceedings of CARS (2010)
Liu, W., Wu, C., Feng, B., Liu, J.: Conditional preference in recommender systems. Expert Syst. Appl. 42, 774–788 (2015)
Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Meth. Instrum. Comput. 1996, 203–208 (1996)
Lang, J.: Graphical representation of ordinal preferences: languages and applications. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS-ConceptStruct 2010. LNCS (LNAI), vol. 6208, pp. 3–9. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14197-3_3
Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57, 304–324 (2009)
Rossi, F., Venable, K.B., Walsh, T.: mCP nets: representing and reasoning with preferences of multiple agents. AAAI 4, 729–734 (2004)
Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How hard is bribery in elections? JAIR 35, 485–532 (2009)
Maudet, N., Pini, M.S., Venable, K.B., Rossi, F.: Influence and aggregation of preferences over combinatorial domains. In: Proceedings of AAMAS 2012, pp. 1313–1314 (2012)
Maran, A., Maudet, N., Pini, M.S., Rossi, F., Venable, K.B.: A framework for aggregating influenced CP-nets and its resistance to bribery. In: Proceedings of AAAI 2013 (2013)
Mattei, N., Pini, M.S., Venable, K.B., Rossi, F.: Bribery in voting with CP-nets. Ann. Math. Artif. Intell. 68, 135 (2013)
Mattei, N., Pini, M.S., Venable, K.B., Rossi, F.: Bribery in voting over combinatorial domains is easy. In: Proceedings of AAMAS 2012, pp. 1407–1408 (2012)
Dalla Pozza, G., Pini, M.S., Rossi, F., Venable, K.B.: Multi-agent soft constraint aggregation via sequential voting. In: Proceedings of IJCAI, pp. 172–177 (2011)
Pini, M.S., Rossi, F., Venable, K.B.: Resistance to bribery when aggregating soft constraints. In: Proceedings of AAMAS 2013, pp. 1301–1302 (2013)
Pini, M.S., Rossi, F., Venable, K.B.: Bribery in voting with soft constraints. In: Proceedings of AAAI 2013 (2013)
Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S.: Automatic description of context-altering services through observational learning. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) Pervasive 2012. LNCS, vol. 7319, pp. 461–477. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31205-2_28
Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006). vol. 2, pp. 2126–2136. IEEE (2006)
Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM (2005)
Qian, G., Sural, S., Gu, Y., Pramanik, S.: Similarity between euclidean and cosine angle distance for nearest neighbor queries. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 1232–1237. ACM (2004)
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, New York (2011). doi:10.1007/978-0-387-85820-3_7
Allen, T.E., Goldsmith, J., Justice, H.E., Mattei, N., Raines, K.: Generating CP-nets uniformly at random. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI) (2016)
Jøsang, A., Guo, G., Pini, M.S., Santini, F., Xu, Y.: Combining recommender and reputation systems to produce better online advice. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Megías, D. (eds.) MDAI 2013. LNCS (LNAI), vol. 8234, pp. 126–138. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41550-0_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Khoshkangini, R., Pini, M.S., Rossi, F. (2016). A Self-Adaptive Context-Aware Group Recommender System. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds) AI*IA 2016 Advances in Artificial Intelligence. AI*IA 2016. Lecture Notes in Computer Science(), vol 10037. Springer, Cham. https://doi.org/10.1007/978-3-319-49130-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-49130-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49129-5
Online ISBN: 978-3-319-49130-1
eBook Packages: Computer ScienceComputer Science (R0)