A Self-Adaptive Context-Aware Group Recommender System | SpringerLink
Skip to main content

A Self-Adaptive Context-Aware Group Recommender System

  • Conference paper
  • First Online:
AI*IA 2016 Advances in Artificial Intelligence (AI*IA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10037))

Included in the following conference series:

Abstract

The importance role of contextual information on users’ daily decisions led to develop the new generation of recommender systems called Context-Aware Recommender Systems (CARSs). Dependency of users preferences on the context of entities (e.g., restaurant, road, weather) in a dynamic domain, make the recommendation arduous to properly meet the users preferences and gain high level of users’ satisfaction degree, especially in a group recommendation, in which several users need to take a joint decision. In these scenarios may also happen that some users have more weight/importance in the decision process. We propose a self-adaptive CARS (SaCARS) that provides fair services to a group of users who have different importance levels within their group Such services are recommended based on the conditional and qualitative preferences of the users that may change over time based on the different importance levels of the users in the group, on the context of the users, and the context of all the associated entities (e.g., restaurant, weather, other users) in the problem domain. In our framework we model users’ preferences via conditional preference networks (CP-nets) and Time, we adapt Hyperspace Analogue to Context (HAC) model to handle the multi-dimensional context into the system, and sequential voting rule is used to aggregate users’ preferences. We also evaluate the approach experimentally on a real-word scenario. Results show that it is promising.

F. Rossi—(on leave from University of Padova).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper we provide a revised and extended framework w.r.t. the one shown in [1]. We now assume that users can have different weights in the group and different priorities to order the features. Moreover, we evaluate the approach on real-data.

  2. 2.

    In this study, Space refers to a domain where all entities have dependencies. For example, in the space of selecting a restaurant, users, road, restaurants and weather have relations that can influence users’ preferences.

  3. 3.

    The bribery problem is defined by an external agent (the briber) who wants to influence the result of the rule by convincing some users to change their preferences, in order to get a collective result which is more preferred to him; there is usually a limited budget to be spent by the briber to convince the users [20].

References

  1. Khoshkangini, R., Pini, M.S., Rossi, F.: A design of context-aware framework for conditional preferences of group of users. In: Lee, R. (ed.) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. SCI, vol. 653, pp. 97–112. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33810-1_8

    Chapter  Google Scholar 

  2. De Gemmis, M., Iaquinta, L., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Preference learning in recommender systems. Prefer. Learn. 41 (2009)

    Google Scholar 

  3. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application developments: a survey. Decis. Support Syst. 74, 12–32 (2015)

    Article  Google Scholar 

  4. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)

    Article  Google Scholar 

  5. Ono, C., Kurokawa, M., Motomura, Y., Asoh, H.: A context-aware movie preference model using a Bayesian network for recommendation and promotion. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 247–257. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73078-1_28

    Chapter  Google Scholar 

  6. Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application COMPASS. In: Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 235–244. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27780-4_27

    Chapter  Google Scholar 

  7. Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S.: Context-driven personalized service discovery in pervasive environments. World Wide Web 14, 295–319 (2011)

    Article  Google Scholar 

  8. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  10. Smaaberg, S.F., Shabib, N., Krogstie, J.: A user-study on context-aware group recommendation for concerts. In: HT (Doctoral Consortium/Late-breaking Results/Workshops) (2014)

    Google Scholar 

  11. Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)

    Article  Google Scholar 

  12. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. (TOIS) 23, 103–145 (2005)

    Article  Google Scholar 

  13. Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: Workshop on Context-Aware Recommender Systems (CARS 2009) (2009)

    Google Scholar 

  14. Oku, K., et al.: A recommendation system considering users past/current/future contexts. In: Proceedings of CARS (2010)

    Google Scholar 

  15. Liu, W., Wu, C., Feng, B., Liu, J.: Conditional preference in recommender systems. Expert Syst. Appl. 42, 774–788 (2015)

    Article  Google Scholar 

  16. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Meth. Instrum. Comput. 1996, 203–208 (1996)

    Article  Google Scholar 

  17. Lang, J.: Graphical representation of ordinal preferences: languages and applications. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS-ConceptStruct 2010. LNCS (LNAI), vol. 6208, pp. 3–9. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14197-3_3

    Chapter  Google Scholar 

  18. Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57, 304–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rossi, F., Venable, K.B., Walsh, T.: mCP nets: representing and reasoning with preferences of multiple agents. AAAI 4, 729–734 (2004)

    Google Scholar 

  20. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How hard is bribery in elections? JAIR 35, 485–532 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Maudet, N., Pini, M.S., Venable, K.B., Rossi, F.: Influence and aggregation of preferences over combinatorial domains. In: Proceedings of AAMAS 2012, pp. 1313–1314 (2012)

    Google Scholar 

  22. Maran, A., Maudet, N., Pini, M.S., Rossi, F., Venable, K.B.: A framework for aggregating influenced CP-nets and its resistance to bribery. In: Proceedings of AAAI 2013 (2013)

    Google Scholar 

  23. Mattei, N., Pini, M.S., Venable, K.B., Rossi, F.: Bribery in voting with CP-nets. Ann. Math. Artif. Intell. 68, 135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mattei, N., Pini, M.S., Venable, K.B., Rossi, F.: Bribery in voting over combinatorial domains is easy. In: Proceedings of AAMAS 2012, pp. 1407–1408 (2012)

    Google Scholar 

  25. Dalla Pozza, G., Pini, M.S., Rossi, F., Venable, K.B.: Multi-agent soft constraint aggregation via sequential voting. In: Proceedings of IJCAI, pp. 172–177 (2011)

    Google Scholar 

  26. Pini, M.S., Rossi, F., Venable, K.B.: Resistance to bribery when aggregating soft constraints. In: Proceedings of AAMAS 2013, pp. 1301–1302 (2013)

    Google Scholar 

  27. Pini, M.S., Rossi, F., Venable, K.B.: Bribery in voting with soft constraints. In: Proceedings of AAAI 2013 (2013)

    Google Scholar 

  28. Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S.: Automatic description of context-altering services through observational learning. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) Pervasive 2012. LNCS, vol. 7319, pp. 461–477. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31205-2_28

    Chapter  Google Scholar 

  29. Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006). vol. 2, pp. 2126–2136. IEEE (2006)

    Google Scholar 

  30. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM (2005)

    Google Scholar 

  31. Qian, G., Sural, S., Gu, Y., Pramanik, S.: Similarity between euclidean and cosine angle distance for nearest neighbor queries. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 1232–1237. ACM (2004)

    Google Scholar 

  32. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, New York (2011). doi:10.1007/978-0-387-85820-3_7

    Chapter  Google Scholar 

  33. Allen, T.E., Goldsmith, J., Justice, H.E., Mattei, N., Raines, K.: Generating CP-nets uniformly at random. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI) (2016)

    Google Scholar 

  34. Jøsang, A., Guo, G., Pini, M.S., Santini, F., Xu, Y.: Combining recommender and reputation systems to produce better online advice. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Megías, D. (eds.) MDAI 2013. LNCS (LNAI), vol. 8234, pp. 126–138. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41550-0_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Khoshkangini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Khoshkangini, R., Pini, M.S., Rossi, F. (2016). A Self-Adaptive Context-Aware Group Recommender System. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds) AI*IA 2016 Advances in Artificial Intelligence. AI*IA 2016. Lecture Notes in Computer Science(), vol 10037. Springer, Cham. https://doi.org/10.1007/978-3-319-49130-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49130-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49129-5

  • Online ISBN: 978-3-319-49130-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics