Improving Image Retrieval by Local Feature Reselection with Query Expansion | SpringerLink
Skip to main content

Improving Image Retrieval by Local Feature Reselection with Query Expansion

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9916))

Included in the following conference series:

  • 2361 Accesses

Abstract

A novel approach related to query expansion is proposed to improve image retrieval performance. The proposed approach investigates the problem that not all of the visual features extracted from images are appropriate to be employed for similarity matching. To address this issue, we distinguish image features as effective features from noisy features. The former is benefit for image retrieval while the latter causes deterioration, since the matching of noisy features may rise the similarity score of irrelevant images. In this work, a detailed illustration of effective and noisy features is given and the aforementioned problem is solved by selecting effective features to enhance query feature set while removing noisy features via spatial verification. Experimental results demonstrate that the proposed approach outperforms a number of state-of-the-art query expansion approaches.

This work was supported in part by the National Natural Science Foundation of China under Grant 61472281, the “Shu Guang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 12SG23, and the Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning under Grant GZ2015005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the ICCV 2003, pp. 1470–1477, October 2003

    Google Scholar 

  2. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  3. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  4. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: Proceedings of the ICCV 2007, pp. 1–8, October 2007

    Google Scholar 

  5. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88682-2_24

    Chapter  Google Scholar 

  6. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the CVPR 2007, pp. 1–8, June 2007

    Google Scholar 

  7. Wang, W., Zhang, D., Zhang, Y., Li, J.: Fast and robust spatial matching for object retrieval. In: Proceedings of the ICASSP 2010, pp. 1238–1241, March 2010

    Google Scholar 

  8. Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall II: query expansion revisited. In: Proceedings of the CVPR 2011, pp. 889–896, June 2011

    Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Tolias, G., Avrithis, Y., Jégou, H.: To aggregate or not to aggregate: Selective match kernels for image search. In: Proceedings of the ICCV 2013, pp. 1401–1408, December 2013

    Google Scholar 

  11. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: Proceedings of the CVPR 2009, pp. 1169–1176, June 2009

    Google Scholar 

  12. Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale object retrieval. In: Proceedings of the CVPR 2009, pp. 9–16, June 2009

    Google Scholar 

  13. Verbeek, J., Harzallah, H., Schmid, C., Jégou, H.: Accurate image search using the contextual dissimilarity measure. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 2–11 (2010)

    Article  Google Scholar 

  14. Mikulík, A., Perdoch, M., Chum, O., Matas, J.: Learning a fine vocabulary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 1–14. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_1

    Chapter  Google Scholar 

  15. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proceedings of the CVPR 2012, pp. 2911–2918, June 2012

    Google Scholar 

  16. Tolias, G., Jégou, H.: Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern Recog. 47(10), 3466–3476 (2014)

    Article  Google Scholar 

  17. Qin, D., Wengert, C., Gool, L.V.: Query adaptive similarity for large scale object retrieval. In: Proceedings of the CVPR 2013, pp. 1610–1617, June 2013

    Google Scholar 

  18. Mikulík, A., Perdoch, M., Chum, O., Matas, J.: Learning vocabularies over a fine quantization. Int. J. Comput. Vis. 103(1), 163–175 (2013)

    Article  MathSciNet  Google Scholar 

  19. Tolias, G., Avrithis, Y., Jégou, H.: Image search with selective match kernels: aggregation across single and multiple images. Int. J. Comput. Vis. 116(3), 247–261 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wang, H., Sun, T. (2016). Improving Image Retrieval by Local Feature Reselection with Query Expansion. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48890-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48889-9

  • Online ISBN: 978-3-319-48890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics