Sparse Representation Based Histogram in Color Texture Retrieval | SpringerLink
Skip to main content

Sparse Representation Based Histogram in Color Texture Retrieval

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9916))

Included in the following conference series:

  • 2418 Accesses

Abstract

Sparse representation is proposed to generate the histogram of feature vectors, namely sparse representation based histogram (SRBH), in which a feature vector is represented by a number of basis vectors instead of by one basis vector in classical histogram. This amelioration makes the SRBH to be a more accurate representation of feature vectors, which is confirmed by the analysis in the aspect of reconstruction errors and the application in color texture retrieval. In color texture retrieval, feature vectors are constructed directly from coefficients of Discrete Wavelet Transform (DWT). Dictionaries for sparse representation are generated by K-means. A set of sparse representation based histograms from different feature vectors is used for image retrieval and chi-squared distance is adopted for similarity measure. Experimental results assessed by Precision-Recall and Average Retrieval Rate (ARR) on four widely used natural color texture databases show that this approach is robust to the number of wavelet decomposition levels and outperforms classical histogram and state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, C., Zhang, J., Liu, Z., Zhao, W.L.: K-means based histogram using multiresolution feature vectors for color texture database retrieval. Multimedia Tools. Appl. 74(4), 1469–1488 (2014)

    Article  Google Scholar 

  2. Bai, C., Zou, W., Kpalma, K., Ronsin, J.: Efficient colour texture image retrieval by combination of colour and texture features in wavelet domain. Electron. Lett. 48(23), 1463–1465 (2012)

    Article  Google Scholar 

  3. Burghouts, G.J., Geusebroek, J.M.: Material-specific adaptation of color invariant features. Pattern Recogn. Lett. 30(3), 306–313 (2009)

    Article  Google Scholar 

  4. Do, M., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Trans. Image Process 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  5. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mairal, J., Bach, F., Ponce, J.: SPArse Modeling Software. http://spams-devel.gforge.inria.fr/index.html. Accessed June 2011

  7. Kwitt, R., Meerwald, P., Uhl, A.: Efficient texture image retrieval using copulas in a bayesian framework. IEEE Trans. Image Process 20(7), 2063–2077 (2011)

    Article  MathSciNet  Google Scholar 

  8. Liu, G.H., Zhang, L., Hou, Y.K., Li, Z.Y., Yang, J.Y.: Image retrieval based on multi-texton histogram. Pattern Recogn. 43(7), 2380–2389 (2010)

    Article  MATH  Google Scholar 

  9. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Media Laboratory, M.: Vistex database of textures. http://vismod.media.mit.edu/vismod/imagery/VisionTexture/. Accessed Dec 2010

  11. Mei, T., Rui, Y., Li, S., Tian, Q.: Multimedia search reranking. ACM Comput. Surv. 46(3), 1–38 (2014)

    Article  Google Scholar 

  12. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  13. Ophir, B., Lustig, M., Elad, M.: Multi-scale dictionary learning using wavelets. IEEE J. Sel. Top. Sig. Process. 5(5), 1014–1024 (2011)

    Article  Google Scholar 

  14. Patel, V., Chellappa, R.: Dictionary learning. In: Patel, V.M., Chellappa, R. (eds.) Sparse Representations and Compressive Sensing for Imaging and Vision, pp. 85–92. Springer, New York (2013)

    Chapter  Google Scholar 

  15. Picard, R., Kabir, T., Liu, F.: Real-time recognition with the entire brodatz texture database. In: IEEE International Conference on Computer Vision Pattern Recognition (CVPR), pp. 638–639, June 1993

    Google Scholar 

  16. University of Salzburg: Salzburg texture image database. http://www.wavelab.at/sources/STex/. Accessed Sep 2012

  17. Verdoolaege, G., De Backer, S., Scheunders, P.: Multiscale colour texture retrieval using the geodesic distance between multivariate generalized gaussian models. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 169–172, October 2008

    Google Scholar 

  18. Wang, M., Fu, W., Hao, S., Tao, D., Wu, X.: Scalable semi-supervised learning by efficient anchor graph regularization. IEEE Trans. Knowl. Data Eng. 28(7), 1864–1877 (2016)

    Article  Google Scholar 

  19. Wang, M., Gao, Y., Lu, K., Rui, Y.: View-based discriminative probabilistic modeling for 3d object retrieval and recognition. IEEE Trans. Image Process. 22(4), 1395–1407 (2013)

    Article  MathSciNet  Google Scholar 

  20. Wang, M., Li, H., Tao, D., Lu, K., Wu, X.: Multimodal graph-based reranking for web image search. IEEE Trans. Image Process. 21(11), 4649–4661 (2012)

    Article  MathSciNet  Google Scholar 

  21. Wang, M., Li, W., Liu, D., Ni, B., Shen, J., Yan, S.: Facilitating image search with a scalable and compact semantic mapping. IEEE Trans. Cybern. 45(8), 1561–1574 (2015)

    Article  Google Scholar 

  22. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  23. Zou, W., Kpalma, K., Ronsin, J.: Semantic segementation via sparse coding over hierarchical regions. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 2577–2580, October 2012

    Google Scholar 

Download references

Acknowledgement

Part of this work was done while Cong Bai worked as a Ph.D student in IETR UMR CNRS 6164, INSA de Rennes, Université Européenne de Bretagne, France. This work is now supported by Natural Science Foundation of China under Grant No. 61502424, 61402415, U1509207 and 61325019, Zhejiang Provincial Natural Science Foundation of China under Grant No. LY15F020028, LY15F030014, LY16F020033 and Zhejiang University of Technology under Grant No.2014XZ006. The work of Jinglin Zhang is supported by the Scientific Research Foundation of Nanjing University of Information Science and Technology(Grant No.S8113055001),Natural Science Foundation of JiangSu province (Grant No.SBK2015040336) and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bai, C., Chen, Jn., Zhang, J., Kpalma, K., Ronsin, J. (2016). Sparse Representation Based Histogram in Color Texture Retrieval. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48890-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48889-9

  • Online ISBN: 978-3-319-48890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics