Machine Learning Method to Establish the Connection Between Age Related Macular Degeneration and Some Genetic Variations | SpringerLink
Skip to main content

Machine Learning Method to Establish the Connection Between Age Related Macular Degeneration and Some Genetic Variations

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence (IWAAL 2016, AmIHEALTH 2016, UCAmI 2016)

Abstract

Medicine research based in machine learning methods allows the improvement of diagnosis in complex diseases. Age related Macular Degeneration (AMD) is one of them. AMD is the leading cause of blindness in the world. It causes the 8.7 % of blind people. A set of case and controls study could be developed by machine-learning methods to find the relation between Single Nucleotide Polymorphisms (SNPs) SNP_A, SNP_B, SNP_C and AMD. In this paper we present a machine-learning based analysis to determine the relation of three single nucleotide SNPs and the AMD disease. The SNPs SNP_B, SNP_C remained in the top four relevant features with ophthalmologic surgeries and bilateral cataract. We aim also to determine the best set of features for the classification process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hageman, G.S., Gehrs, K., Johnson, L.V., Anderson, D.: Age-Related Macular Degeneration (AMD) (2008)

    Google Scholar 

  2. Congdon, N., et al.: Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122, 451–452 (2004)

    Article  Google Scholar 

  3. Friedman, D.S., et al.: Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. (Chicago, Ill. 1960) 122, 564–572 (2004)

    Article  Google Scholar 

  4. Jager, R.D., Mieler, W.F., Miller, J.W.: Age-related macular degeneration. N. Engl. J. Med. 358, 2606–2617 (2008)

    Article  Google Scholar 

  5. Patel, N., Adewoyin, T., Chong, N.V.: Age-related macular degeneration: a perspective on genetic studies. Eye (Lond). 22, 768–776 (2008)

    Article  Google Scholar 

  6. Buentello-Volante, B., et al.: Susceptibility to advanced age-related macular degeneration and alleles of complement factor H, complement factor B, complement component 2, complement component 3, and age-related maculopathy susceptibility 2 genes in a Mexican population. Mol. Vis. 18, 2518–2525 (2012)

    Google Scholar 

  7. Sivakumaran, T.A., et al.: A 32 kb critical region excluding Y402H in CFH mediates risk for age-related macular degeneration. PLoS ONE 6, e25598 (2011)

    Article  Google Scholar 

  8. Gupta, S.K., et al.: Prevalence of early and late age-related macular degeneration in a rural population in Northern India: the INDEYE feasibility study. Invest. Ophthalmol. Vis. Sci. 48, 1007–1011 (2007)

    Article  Google Scholar 

  9. Nirmalan, P.K., et al.: Prevalence of vitreoretinal disorders in a rural population of Southern India. Arch. Ophthalmol. 122, 581 (2004)

    Article  Google Scholar 

  10. Krishnaiah, S., et al.: Risk factors for age-related macular degeneration: findings from the Andhra Pradesh eye disease study in South India. Investig. Opthalmology Vis. Sci. 46, 4442 (2005)

    Article  Google Scholar 

  11. Clemons, T.E., et al.: Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS) AREDS report no. 19. Ophthalmology 112, 533–539 (2005)

    Article  Google Scholar 

  12. Berman, K., Brodaty, H.: Psychosocial effects of age-related macular degeneration. Int. Psychogeriatr. 18, 415–428 (2006)

    Article  Google Scholar 

  13. Rovner, B.W., et al.: Effect of depression on vision function in age-related macular degeneration. Arch. Ophthalmol. 120, 1041 (2002)

    Article  Google Scholar 

  14. Klein, R., et al.: Inflammation, complement factor h, and age-related macular degeneration: the multi-ethnic study of atherosclerosis. Ophthalmology 115, 1742–1749 (2008)

    Article  Google Scholar 

  15. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)

    Article  Google Scholar 

  16. Cardoso, L., et al.: Abstract computation in schizophrenia detection through artificial neural network based systems. Sci. World J. 2015, 1–10 (2015)

    Article  Google Scholar 

  17. Fraccaro, P., et al.: Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach. BMC Ophthalmol. 15, 10 (2015)

    Article  Google Scholar 

  18. Seddon, J.M., Sharma, S., Adelman, R.A.: Evaluation of the clinical age-related maculopathy staging system. Ophthalmology 113, 260–266 (2006)

    Article  Google Scholar 

  19. Marchini, J., Donnelly, P., Cardon, L.R.: Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat. Genet. 37, 413–417 (2005)

    Article  Google Scholar 

  20. Hadley, D., et al.: Analysis of six genetic risk factors highly associated with AMD in the region surrounding ARMS2 and HTRA1 on chromosome 10, region q26. Investig. Ophthalmol. Vis. Sci. 51, 2191–2196 (2010)

    Article  Google Scholar 

  21. Simonett, J.M., et al.: A validated phenotyping algorithm for genetic association studies in age-related macular degeneration. Sci. Rep. 5, 12875 (2015)

    Article  Google Scholar 

  22. Dasgupta, A., Sun, Y.: Brief review of regression based and machine learning methods in genetic epidemiology: the genetic analysis workshop 17 experience. Genet. Epidemiol. 35, 1–13 (2011)

    Article  Google Scholar 

  23. Hu, X., et al.: Artificial neural networks and prostate cancer–tools for diagnosis and management. Nat. Rev. Urol. 10, 174–182 (2013)

    Article  Google Scholar 

  24. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45, 427–437 (2009)

    Article  Google Scholar 

  25. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. Informatica 31, 249–268 (2007)

    MathSciNet  MATH  Google Scholar 

  26. The R Foundation: The R Project for Statistical Computing. (2016). www.r-project.org. Accessed 13 June 2016

  27. Kuhn, M., et al: Caret: classification and regression training. R package version 6.0–24. (2014)

    Google Scholar 

  28. Aswathi, B.L.: Sensitivity, Specificity, Accuracy and the relationship between them. Lifescience (2009). http://www.lifenscience.com/bioinformatics/sensitivity-specificity-accuracy-and. Accessed 13 June 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonieta Martínez-Velasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Martínez-Velasco, A., Zenteno, J.C., Martínez-Villaseñor, L., Miralles-Pechúan, L., Pérez-Ortiz, A., Estrada-Mena, F.J. (2016). Machine Learning Method to Establish the Connection Between Age Related Macular Degeneration and Some Genetic Variations. In: García, C., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds) Ubiquitous Computing and Ambient Intelligence. IWAAL AmIHEALTH UCAmI 2016 2016 2016. Lecture Notes in Computer Science(), vol 10070. Springer, Cham. https://doi.org/10.1007/978-3-319-48799-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48799-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48798-4

  • Online ISBN: 978-3-319-48799-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics