Abstract
Quantitative analysis of perivascular spaces (PVSs) is important to reveal the correlations between cerebrovascular lesions and neurodegenerative diseases. In this study, we propose a learning-based segmentation framework to extract the PVSs from high-resolution 7T MR images. Specifically, we integrate three types of vascular filter responses into a structured random forest for classifying voxels into PVS and background. In addition, we also propose a novel entropy-based sampling strategy to extract informative samples in the background for training the classification model. Since various vascular features can be extracted by the three vascular filters, even thin and low-contrast structures can be effectively extracted from the noisy background. Moreover, continuous and smooth segmentation results can be obtained by utilizing the patch-based structured labels. The segmentation performance is evaluated on 19 subjects with 7T MR images, and the experimental results demonstrate that the joint use of entropy-based sampling strategy, vascular features and structured learning improves the segmentation accuracy, with the Dice similarity coefficient reaching 66 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Descombes, X., Kruggel, F., Wollny, G., Gertz, H.J.: An object-based approach for detecting small brain lesions: application to Virchow-Robin spaces. IEEE Trans. Med. Imaging 23(2), 246–255 (2004)
Uchiyama, Y., Kunieda, T., Asano, T., Kato, H., Hara, T., Kanematsu, M., Iwama, T., Hoshi, H., Kinosada, Y., Fujita, H.: Computer-aided diagnosis scheme for classification of lacunar infarcts and enlarged virchow-robin spaces in brain MR images. In: Engineering in Medicine and Biology Society, pp. 3908–3911. IEEE (2008)
Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)
Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)
Hernández, M., Piper, R.J., Wang, X., Deary, I.J., Wardlaw, J.M.: Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: a systematic review. J. Magn. Reson. Imaging 38(4), 774–785 (2013)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 9, 891–906 (1991)
Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)
Derpanis, K.G., Wildes, R.P.: Dynamic texture recognition based on distributions of spacetime oriented structure. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 191–198. IEEE (2010)
Zhang, J., Zhao, H., Liang, J.: Continuous rotation invariant local descriptors for texton dictionary-based texture classification. Comput. Vis. Image Underst. 117(1), 56–75 (2013)
Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_27
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Zhang, J., Gao, Y., Park, S.H., Zong, X., Lin, W., Shen, D. (2016). Segmentation of Perivascular Spaces Using Vascular Features and Structured Random Forest from 7T MR Image. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-47157-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47156-3
Online ISBN: 978-3-319-47157-0
eBook Packages: Computer ScienceComputer Science (R0)