Non-singleton Interval Type-2 Fuzzy Systems as Integration Methods in Modular Neural Networks Used Genetic Algorithms to Design | SpringerLink
Skip to main content

Non-singleton Interval Type-2 Fuzzy Systems as Integration Methods in Modular Neural Networks Used Genetic Algorithms to Design

  • Chapter
  • First Online:
Nature-Inspired Design of Hybrid Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 667))

Abstract

In this paper, we propose the use of Non-Singleton Interval Type-2 Fuzzy Systems (NSIT2FI) automatically designed through genetic algorithms as integration method of modular neural networks (MNN’s) for multimodal biometrics. The goal is to obtain such fuzzy systems as integrators, better recognition rate, and best mean square error in MNN. The results shown comparison between interval type-2 fuzzy systems and Non-singleton Type-2 Fuzzy Systems, where we can observe showing a significant difference that we can get higher recognition rate using non-singleton type-2 fuzzy logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence, Prentice Hall, 1997.

    Google Scholar 

  2. J. Mendel, UNCERTAIN Rule-Based Fuzzy Logic Systems, Introduction and New Directions, Prentice Hall, 2001.

    Google Scholar 

  3. J. Mendel, Uncertain Rule-based Fuzzy Logic Systems, Prentice Hall, 2001.

    Google Scholar 

  4. Mendel, J., John, R., «Type-2 fuzzy sets made simple,» IEEE Transactions on Fuzzy Systems , nº 10, pp. 117-127, 2002.

    Google Scholar 

  5. Sahab, Nazanin and Hagras, Hani, «Adaptive Non-singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications.» International Journal of Computers, Communications and Control , vol. 3, nº 5, pp. 503-529, 2011.

    Google Scholar 

  6. T. S. M. Takagi, «Fuzzy identification of systems and its application to modeling and control,» IEEE Transactions on Systems, Man, and Cybernetics, vol. 1, nº 15, 1985.

    Google Scholar 

  7. Qilian Liang, Jerry M. Mendel, «Interval Type-2 Fuzzy Logic Systems:,» IEEE TRANSACTIONS ON FUZZY SYSTEMS, vol. 8, nº 5, pp. 535-550, 2000.

    Google Scholar 

  8. Liang, Q., Mendel, J. , «Interval type-2 fuzzy logic systems: theory and design,» IEEE Transactions on Fuzzy Systems, vol. 5, nº 8, pp. 535-550, 2000.

    Google Scholar 

  9. Mendel, J., Mouzouris, George C., «Type-2 fuzzy logic systems,» IEEE Transactions on Fuzzy Systems, nº 7, pp. 643-658, 1999.

    Google Scholar 

  10. O. Castillo, P. Melin, Studies in Fuzziness and Soft Computing, Type-2 Fuzzy Logic: Theory and Applications, Tijuana , Baja California: Springer-Verlag Berlin Heidelberg, 2008.

    Google Scholar 

  11. Ricardo Martínez-Soto, Oscar Castillo, Juan R. Castro, «Genetic Algorithm Optimization for Type-2 Non-singleton Fuzzy Logic Controllers. : 3-18,» de Recent Advances on Hybrid Approaches for Designing Intelligent Systems, 2014, pp. 3-18.

    Google Scholar 

  12. Denisse Hidalgo, Patricia Melin, Oscar Castillo, «Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods in Modular Neural Networks for Multimodal Biometry and its Optimization with Genetic Algorithms,» Journal of Automation, Mobil Robotics & Intelligent Systems, vol. 2, nº 1, pp. 53-73, 2008.

    Google Scholar 

  13. Juan R. Castro, Oscar Castillo, Luis G. Martínez, «Interval Type-2 Fuzzy Logic Toolbox.,» Engineering Letters, vol. 1, nº 15, pp. 89-98, 2007.

    Google Scholar 

  14. Karnik, N.N., Mendel, J., «Centroid of a type-2 fuzzy set,» Information Sciences, Vols. %1 de %2(1-4), nº 132, pp. 195-220, 2001.

    Google Scholar 

  15. Denisse Hidalgo, Oscar Castillo, Patricia Melin, «Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms,» Information Sciences, vol. 179, nº Issue 13, p. 2123–2145, 13 June 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisse Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hidalgo, D., Melin, P., Castro, J.R. (2017). Non-singleton Interval Type-2 Fuzzy Systems as Integration Methods in Modular Neural Networks Used Genetic Algorithms to Design. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Nature-Inspired Design of Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-319-47054-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47054-2_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47053-5

  • Online ISBN: 978-3-319-47054-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics