Abstract
Safety, security, and comfort of pedestrian crowds during large gatherings are heavily influenced by the layout of the underlying environment. This work presents a systematic agent-based simulation approach to appraise and optimize the layout of a pedestrian environment in order to maximize safety, security, and comfort. The performance of the approach is demonstrated based on annual “Salone del mobile” (Design Week) exhibition in Milan, Italy. Given the large size of the scenario, and the proportionally high number of simultaneously present pedestrians, the computational costs of a pure microscopic simulation approach would make this hardly applicable, whereas a multi-scale approach, combining simulation models of different granularity, provides a reasonable trade off between a detailed management of individual pedestrians and possibility to effectively carry out what-if analyses with different environmental configurations. The paper will introduce the scenario, the base model and the alternatives discussing the achieved results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anh, N.T.N., Daniel, Z.J., Du, N.H., Drogoul, A., An, V.D.: A hybrid macro-micro pedestrians evacuation model to speed up simulation in road networks. In: Dechesne, F., Hattori, H., Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds.) AAMAS 2011. LNCS (LNAI), vol. 7068, pp. 371–383. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27216-5_28
Bandini, S., Crociani, L., Vizzari, G.: Heterogeneous pedestrian walking speed in discrete simulation models. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow 2013, pp. 273–279. Springer International Publishing, Switzerland (2015)
Blue, V., Adler, J.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp. Res. Rec. J. Transp. Res. Board 1644, 29–36 (1998)
Bourr, E., Lesort, J.B.: Mixing microscopic representations of traffic flow: hybrid model based on Lighthill-Whitham-Richards theory. Transp. Res. Rec. 1852, 193–200 (2003)
Burghout, W., Koutsopoulos, H., Andréasson, I.: Hybrid mesoscopic-microscopic traffic simulation. Transp. Res. Rec. 1934, 218–225 (2005)
Burghout, W., Wahlstedt, J.: Hybrid traffic simulation with adaptive signal control. Transp. Res. Rec. 1999, 191–197 (2007)
Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Appl. 295(3–4), 507–525 (2001)
Cascetta, E.: A stochastic process approach to the analysis of temporal dynamics in transportation networks. Transp. Res. B 23B(1), 1–17 (1989)
Chooramun, N., Lawrence, P., Galea, E.: Implementing a hybrid space discretisation within an agent based evacuation model. In: Peacock, R., Kuligowski, E., Averill, J. (eds.) Pedestrian and Evacuation Dynamics 2010, pp. 449–458. Springer, Berlin (2011)
Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 46111 (2010)
Crociani, L., Lämmel, G.: Multidestination pedestrian flows in equilibrium: a cellular automaton-based approach. Comput.-Aided Civ. Infrastruct. Eng. 31, 432–448 (2016). doi:10.1111/mice.12209
Crociani, L., Manenti, L., Vizzari, G.: MAKKSim: MAS-based crowd simulations for designer’s decision support. In: Demazeau, Y., Ishida, T., Corchado, J.M., Bajo, J. (eds.) PAAMS 2013. LNCS (LNAI), vol. 7879, pp. 25–36. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38073-0_3
Dada, J.O., Mendes, P.: Multi-scale modelling and simulation in systems biology. Integr. Biol. 3(2), 86–96 (2011)
Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)
Espié, S., Gattuso, D., Galante, F.: A hybrid traffic model coupling macro and behavioural micro simulation. Annual Meeting Preprint 06–2013, Transportation Research Board, Washington DC (2006)
Flötteröd, G., Lämmel, G.: Bidirectional pedestrian fundamental diagram. Transp. Res. Part B Methodol. 71(C), 194–212 (2015)
Gawron, C.: An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int. J. Mod. Phys. C 9(3), 393–407 (1998)
Helbing, D.: A fluid dynamic model for the movement of pedestrians. arXiv preprint cond-mat/9805213 (1998)
Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M.: Micro- and macro-simulation of freeway traffic. Math. Comput. Model. 35, 517–547 (2002)
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)
Henderson, L.: The statistics of crowd fluids. Nature 229(5284), 381–383 (1971)
Hoogendoorn, S., Bovy, P.: Dynamic user-optimal assignment in continuous time and space. Transp. Res. Part B Methodol. 38(7), 571–592 (2004)
Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (2012)
Kretz, T., Lehmann, K., Hofsäß, I.: User equilibrium route assignment for microscopic pedestrian simulation. Adv. Complex Syst. 17(2), 1450010 (2014)
Lämmel, G., Chraibi, M., Kemloh Wagoum, A., Steffen, B.: Hybrid multi- and inter-modal transport simulation: a case study on large-scale evacuation planning. Transp. Res. Rec. (forthcoming)
Lämmel, G., Flötteröd, G.: Towards system optimum: finding optimal routing strategies in time-tependent networks for large-scale evacuation problems. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009: Advances in Artificial Intelligence. LNCS (LNAI), vol. 5803, pp. 532–539. Springer, Berlin Heidelberg (2009)
Lämmel, G., Flötteröd, G.: A CA model for bidirectional pedestrian streams. Procedia Comput. Sci. 52, 950–955 (2015)
Lämmel, G., Grether, D., Nagel, K.: The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transp. Res. Part C Emerg. Technol. 18(1), 84–98 (2010)
Lämmel, G., Klüpfel, H., Nagel, K.: The MATSim network flow model for traffic simulation adapted to large-scale emergency egress and an application to the evacuation of the Indonesian city of Padang in case of a tsunami warning. In: Timmermans, H. (ed.) Pedestrian Behavior, Chap. 11, pp. 245–265. Emerald Group Publishing Limited, UK (2009)
Lämmel, G., Seyfried, A., Steffen, B.: Large-scale and microscopic: a fast simulation approach for urban areas. Annual Meeting Preprint 14–3890, Transportation Research Board, Washington, DC (2014)
Michon, J.: A critical view of driver behavior models: what do we know, what should we do? In: Evans, L., Schwing, R.C. (eds.) Human Behavior and Traffic Safety, pp. 485–524. Springer, US (1985)
Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
Raney, B., Nagel, K.: Iterative route planning for large-scale modular transportation simulations. Future Gener. Comput. Syst. 20(7), 1101–1118 (2004)
Simon, P., Esser, J., Nagel, K.: Simple queueing model applied to the city of Portland. Int. J. Mod. Phys. 10(5), 941–960 (1999)
von Sivers, I., Köster, G.: Dynamic stride length adaptation according to utility and personal space. Transp. Res. Part B Methodol. 74, 104–117 (2014)
Taillandier, P., Vo, D.-A., Amouroux, E., Drogoul, A.: GAMA: a simulation platform that integrates geographical information data, agent-based modeling and multi-scale control. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 242–258. Springer, Heidelberg (2012). doi:10.1007/978-3-642-25920-3_17
Weidmann, U.: Transporttechnik der Fussgänger - Transporttechnische Eigenschaftendes Fussgängerverkehrs (Literaturstudie). Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Crociani, L., Lämmel, G., Vizzari, G. (2016). Multi-scale Simulation for Crowd Management: A Case Study in an Urban Scenario. In: Osman, N., Sierra, C. (eds) Autonomous Agents and Multiagent Systems. AAMAS 2016. Lecture Notes in Computer Science(), vol 10002. Springer, Cham. https://doi.org/10.1007/978-3-319-46882-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-46882-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46881-5
Online ISBN: 978-3-319-46882-2
eBook Packages: Computer ScienceComputer Science (R0)