Abstract
Brain-inspired Computing Architecture (BriCA) is a generic software platform for modular composition of machine learning algorithms. It can combine and schedule an arbitrary number of machine learning components in a brain-inspired fashion to construct higher level structures such as cognitive architectures. We would like to report and discuss the core concepts of BriCA version 1 and prospects toward future development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015), http://tensorflow.org/, software available from tensorflow.org
Einhorn, E., Langner, T., Stricker, R., Martin, C., Gross, H.M.: Mira - middleware for robotic applications. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2591–2598, October 2012
Ghosh, S., Matsuoka, Y., Asai, Y., Hsin, K.Y., Kitano, H.: Software for systems biology: from tools to integrated platforms. Nat. Rev. Genet. 12(12), 821–832 (2011). http://www.ncbi.nlm.nih.gov/pubmed/22048662
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009). http://doi.acm.org/10.1145/1656274.1656278
Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model for sensorimotor learning and control. Neural Comput. 13(10), 2201–2220 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11570996
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). http://science.sciencemag.org/content/313/5786/504
Karpathy, A., Li, F.: Deep visual-semantic alignments for generating image descriptions. CoRR abs/1412.2306 (2014). http://arxiv.org/abs/1412.2306
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). http://dx.doi.org/10.1038/nature14539
Lecun, Y., Cortes, C.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). http://dx.doi.org/10.1038/nature14236
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Enber, D., Chaudhary, V., Young, M.: Machine learning: the high interest credit card of technical debt. In: SE4ML: Software Engineering for Machine Learning (NIPS Workshop) (2014)
Takahashi, K., Kaizu, K., Hu, B., Tomita, M.: A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20(4), 538–546 (2004). http://www.ncbi.nlm.nih.gov/pubmed/14990450
Takahashi, K., Itaya, K., Nakamura, M., Koizumi, M., Arakawa, N., Tomita, M., Yamakawa, H.: A generic software platform for brain-inspired cognitive computing. Procedia Comput. Sci. 71, 31–37 (2015). http://www.sciencedirect.com/science/article/pii/S1877050915036467, 6th Annual International Conference on Biologically Inspired Cognitive Architectures, BICA 2015, 6–8 November Lyon, France
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. CoRR abs/1411.4555 (2014). http://arxiv.org/abs/1411.4555
Acknowledgments
We would like to thank Yuji Ichisugi, Makoto Taiji, Shinji Nishimoto, Hidemoto Nakada, and the members of the Whole Brain Architecture Initiative, especially Ryutaro Ichise, Takashi Omori, Hideki Kashioka, Satoshi Kurihara, Takeshi Sakurada, Takeshi Sato, and Yutaka Matsuo, along with the Whole Brain Architecture Future Leaders for their support, comments, and discussion. This research was supported in part by funds from Yamagata Prefectural Government and Tsuruoka City.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Itaya, K. et al. (2016). BriCA: A Modular Software Platform for Whole Brain Architecture. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9947. Springer, Cham. https://doi.org/10.1007/978-3-319-46687-3_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-46687-3_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46686-6
Online ISBN: 978-3-319-46687-3
eBook Packages: Computer ScienceComputer Science (R0)