Call-by-Value, Elementary Time and Intersection Types | SpringerLink
Skip to main content

Call-by-Value, Elementary Time and Intersection Types

  • Conference paper
  • First Online:
Foundational and Practical Aspects of Resource Analysis (FOPARA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9964))

  • 234 Accesses

Abstract

We present a type assignment system for the call-by-value \(\lambda \)-calculus, such that typable terms reduce to normal form in a number of steps which is elementary in the size of the term itself and in the rank of the type derivation. Types are built through non-idempotent and non-associative intersection, and the system is loosely inspired by elementary affine logic. The result is due to the fact that the lack of associativity in intersection supplies a notion of stratification of the reduction, which recalls the similar notion of stratification in light logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Trans. Comput. Logic 3(1), 137–175 (2002)

    Article  MathSciNet  Google Scholar 

  2. Baillot, P., De Benedetti, E., Ronchi Della Rocca, S.: Characterizing polynomial and exponential complexity classes in elementary lambda-calculus. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 151–163. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44602-7_13

    Google Scholar 

  3. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. In: LICS 2004, pp. 266–275. IEEE Computer Society (2004)

    Google Scholar 

  4. Bernadet, A., Lengrand, S.: Non-idempotent intersection types and strong normalisation. Logical Methods Comput. Sci. 9(4), 1–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Carvalho, D.: Execution Time of lambda-Terms via Denotational Semantics and Intersectio Types. MSCS (2009). To appear

    Google Scholar 

  6. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory for the lambda-calculus. Notre-Dame J. Formal Logic 21(4), 685–693 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppola, P., Dal Lago, U., Ronchi Della Rocca, S.: Light logics and the call-by-value lambda calculus. Logical Methods Comput. Sci. 4(4) (2008)

    Google Scholar 

  8. Danos, V., Joinet, J.: Linear logic and elementary time. Inf. Comput. 183(1), 123–137 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Benedetti, E., Ronchi Della Rocca, S.: Bounding normalization time through intersection types. In: ITRS 2012, vol. 121, pp. 48–57 (2013)

    Google Scholar 

  10. De Benedetti, E.: Ronchi Della Rocca, S.: A type assignment for lambda-calculus complete both for FPTIME and strong normalization. Inf. Comput. 248, 195–214 (2016)

    Article  MATH  Google Scholar 

  11. Gaboardi, M., Ronchi Della Rocca, S.: A soft type assignment system for \(\lambda \)-calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 253–267. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74915-8_21

    Chapter  Google Scholar 

  12. Girard, J.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1–2), 163–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Paolini, L., Piccolo, M., Ronchi Della Rocca, S.: Logical semantics for stability. In: MFPS 2009, vol. 249, pp. 429–449. Elsevier (2009)

    Google Scholar 

  15. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci. 1(2), 125–159 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ronchi Della Rocca, S., Paolini, L.: The Parametric \(\lambda \)-Calculus: A Metamodel for Computation. Texts in Theoretical Computer Science: An EATCS Series. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Ronchi Della Rocca .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Proof of Lemma 3 (Substitution Lemma). The proof of Substitution Lemma uses the following lemma, which is a corollary of Lemma 2.

Lemma 5

  1. i.

    Let \(\varPi {\,\triangleright \,}\varGamma \mid \varDelta \vdash \mathtt{M}: \sigma \), where \(\mathtt{M}\in \mathtt{V}\) and \(\sigma \) is a multiset type; then, for every \(\sigma _{1},\ldots , \sigma _{n}\) such that \(\sigma \cong \sqcup _{i=1}^{n} \sigma _{i}\), there are \(\varPi _{i} {\,\triangleright \,}\varGamma _{i} \mid \varDelta _{i} \vdash \mathtt{M}: \sigma _{i}\), for \(1 \le i \le n\), such that \(\varGamma = \sqcup _{i=1}^{n} \varGamma _{i} \) and \(\varDelta = \sqcup _{i=1}^{n} \varDelta _{i}\); moreover, \(\mathtt{W}(\varPi ,j) = \sum _{i=1}^{n} \frac{|\sigma _{i}|}{ |\sigma | } \cdot \mathtt{W}(\varPi _{i},j)\) and \(\mathtt{R}(\varPi , j) = \sum _{i=1}^{n} \mathtt{R}(\varPi _{i}, j)\) for every \(j \ge 0\).

  2. ii.

    Let \(\varPi {\,\triangleright \,}\varGamma \mid \varDelta \vdash \mathtt{M}: \sigma \), where \(\mathtt{M}\in \mathtt{V}\) and \(\sigma \) is a multiset type; then, for every \(\sigma _{1},\ldots , \sigma _{n}\) such that \(\sigma \cong [ \sigma _{1},\ldots , \sigma _{n} ]\), there are \(\varPi _{i} {\,\triangleright \,}\varGamma _{i} \mid \varDelta _{i} \vdash \mathtt{M}: \sigma _{i}\), for \(1 \le i \le n\), such that \(\varDelta = \sqcup _{i=1}^{n} \varGamma _{i} \sqcup _{i=1}^{n} [ \varDelta _{i} ]\), \(\mathtt{W}(\varPi ,j) = \sum _{i=1}^{n} \frac{|\sigma _{i}|}{ |\sigma | } \cdot \mathtt{W}(\varPi _{i},j-1)\) and \(\mathtt{R}(\varPi , j) = \sum _{i=1}^{n}\mathtt{R}(\varPi _{i}, j-1) \) for every \(j > 0\).

Proof

The proof of point i can be given by induction on \(\sigma \), that of point ii by induction on \(\varPi \), using Lemma 2.

Now we are able to show the proof of Substitution Lemma. Both points follow by induction on \(\varPi \).

  1. i.

     

    • Let \(\varPi \) be

      where \(n=1\), \(\mathtt{M}[ \mathtt{N}/ \mathtt{x}] = \mathtt{N}\) and \(\sigma = \mathtt{A}_{1}\); then \(\mathcal {S}^{\varSigma _{1}}_{\varPi }\) is \(\varSigma _{1} {\,\triangleright \,}\varGamma _{1} \mid \varDelta _{1} \vdash \mathtt{N}: \mathtt{A}_{1}\), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{1}}_{\varPi },j) = \mathtt{W}(\varSigma _{1},j) \le \mathtt{W}(\varPi ,j) + \mathtt{W}(\varSigma _{1},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1}}_{\varPi }, j) = \mathtt{R}(\varSigma _{1}, j) \le \mathtt{R}(\varPi , j) + \mathtt{R}(\varSigma _{1}, j)\) for every \(j \ge 0\).

    • Let \(\varPi \) end with an application of rule (w). If \(\varPi \) is

      then the proof follows by induction. Otherwise, let \(\varPi \) be

      for some k such that \(0 \le k < n\). By inductive hypothesis \( \mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi '} {\,\triangleright \,} \varGamma ' \sqcup _{i=1}^{k} \varGamma _{i} \mid \varDelta ' \sqcup _{i=1}^{k} \varDelta _{i} \vdash \mathtt{M}[\mathtt{N}/ \mathtt{x}]: \sigma \), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi '},j) \le \mathtt{W}(\varPi ',j) + \sum _{i = 1}^{k} \mathtt{W}(\varSigma _{i},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi '}, j) \le \mathtt{R}(\varPi , j) + \sum _{i=1}^{k} \mathtt{R}(\varSigma _{i}, j)\) for every \(j \ge 0\). Then \(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi } {\,\triangleright \,}\varGamma \sqcup _{i=1}^{n} \varGamma _{i} \mid \varDelta \sqcup _{i=1}^{n} \varDelta _{i} \vdash \mathtt{M}[\mathtt{N}/ \mathtt{x}]: \sigma \) is obtained from \(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi '}\) by applying rule (w), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi },j) \le \mathtt{W}(\varPi ',j) + \sum _{i = 1}^{k} \mathtt{W}(\varSigma _{i},j) \le \mathtt{W}(\varPi ,j) + \sum _{i = 1}^{n} \mathtt{W}(\varSigma _{i},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi }, j) = \mathtt{R}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi '}, j) \le \mathtt{R}(\varPi ', j) + \sum _{i=1}^{k} \mathtt{R}(\varSigma _{i}, j) \le \mathtt{R}(\varPi , j) + \sum _{i=1}^{n} \mathtt{R}(\varSigma _{i}, j)\) for every \(j \ge 0\).

    • Let \(\varPi \) be

      where \(\mathtt{M}= \lambda \mathtt{y}. \mathtt{P}\) and \(\sigma = \mathtt{A}\rightarrow \mu \). By the \(\alpha \)-rule we may assume that \(\mathtt{y}\not \in \mathtt{FV}(\mathtt{N})\). By inductive hypothesis \(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi '} {\,\triangleright \,}\varGamma \sqcup _{i=1}^{n} \varGamma _{i}, \mathtt{y}: [ \mathtt{A}] \mid \varDelta \sqcup _{i=1}^{n} \varDelta _{i} \vdash \mathtt{P}[\mathtt{N}/ \mathtt{x}]: \mu \), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi '},j) \le \mathtt{W}(\varPi ',j) + \sum _{i = 1}^{n} \mathtt{W}(\varSigma _{i},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi '}, j) \le \mathtt{R}(\varPi ', j) + \sum _{i=1}^{n} \mathtt{R}(\varSigma _{i}, j)\) for every \(j \ge 0\).

      Then \(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi } {\,\triangleright \,}\varGamma \sqcup _{i=1}^{n} \varGamma _{i} \mid \varDelta \sqcup _{i=1}^{n} \varDelta _{i} \vdash (\lambda \mathtt{y}. \mathtt{P})[\mathtt{N}/ \mathtt{x}]: \mathtt{A}\rightarrow \mu \) is obtained from \(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi '}\) by applying rule \((\rightarrow I_{L})\), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi },j) \le \mathtt{W}(\varPi ,j) + \sum _{i = 1}^{n} \mathtt{W}(\varSigma _{i},j)\) by the definition of weight and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi }, j) = \mathtt{R}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi '}, j) \le \mathtt{R}(\varPi , j) + \sum _{i=1}^{n} \mathtt{R}(\varSigma _{i}, j)\) for every \(j \ge 0\).

      The case of \((\rightarrow I_{M})\) is similar.

    • Let \(\varPi \) end with an application of rule \((\rightarrow E)\) with premises \(\varPi _{1} {\,\triangleright \,}\varGamma ', \mathtt{x}: [ \mathtt{A}_{1},\ldots , \mathtt{A}_{k} ] \mid \varDelta ' \vdash \mathtt{P}: \rho \rightarrow \sigma \) and \(\varPi _{2} {\,\triangleright \,}\varGamma '', \mathtt{x}: [ \mathtt{A}_{k+1},\ldots , \mathtt{A}_{n} ] \mid \varDelta '' \vdash \mathtt{Q}: \rho \), such that \(\mathtt{M}= \mathtt{P}\mathtt{Q}\). By inductive hypothesis on \(\varPi _{1}\), there is a derivation \({ \mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi _{1}} {\,\triangleright \,}\varGamma ' \sqcup _{i=1}^{k} \varGamma _{i} \mid \varDelta ' \sqcup _{i=1}^{k} \varDelta _{i} \vdash \mathtt{P}[\mathtt{N}/ \mathtt{x}]: \rho \rightarrow \sigma }\), where \({\mathtt{W}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi _{1}},j) \le \mathtt{W}(\varPi _{1},j) + \sum _{i = 1}^{k} \mathtt{W}(\varSigma _{i},j)}\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi _{1}}, j) \le \mathtt{R}(\varPi _{1}, j) + \sum _{i=1}^{k} \mathtt{R}(\varSigma _{i}, j)\) for every \(j \ge 0\). By inductive hypothesis on \(\varPi _{2}\), there is a derivation \( \mathcal {S}^{\varSigma _{k+1},\ldots , \varSigma _{n}}_{\varPi _{2}} {\,\triangleright \,}\varGamma '' \sqcup _{i=k+1}^{n} \varGamma _{i} \mid \varDelta '' \sqcup _{i=k+1}^{n} \varDelta _{i} \vdash \mathtt{Q}[\mathtt{N}/ \mathtt{x}]: \rho \), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{k+1},\ldots , \varSigma _{n}}_{\varPi _{2}},j) \le \mathtt{W}(\varPi _{2},j) + \sum _{i = k+1}^{n} \mathtt{W}(\varSigma _{i},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{k+1},\ldots , \varSigma _{n}}_{\varPi _{2}}, j) \le \mathtt{R}(\varPi _{2}, j) + \sum _{i=k+1}^{n} \mathtt{R}(\varSigma _{i}, j)\) for every \(j \ge 0\). Then \(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi } {\,\triangleright \,}\varGamma ' \sqcup \varGamma '' \sqcup _{i=1}^{n} \varGamma _{i} \mid \varDelta ' \sqcup \varDelta '' \sqcup _{i=1}^{n} \varDelta _{i} \vdash (\mathtt{P}\mathtt{Q})[\mathtt{N}/ \mathtt{x}]: \sigma \) is obtained by applying rule \((\rightarrow E)\) to the premises \(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{k}}_{\varPi _{1}}\) and \(\mathcal {S}^{\varSigma _{k+1},\ldots , \varSigma _{n}}_{\varPi _{2}}\), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi },j) \le \mathtt{W}(\varPi ,j) + \sum _{i = 1}^{n} \mathtt{W}(\varSigma _{i},j)\) follows by the definition of weight and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1},\ldots , \varSigma _{n}}_{\varPi }, j) \le \mathtt{R}(\varPi _{1}, j) + \sum _{i=1}^{k} \mathtt{R}(\varSigma _{i}, j) + \mathtt{R}(\varPi _{2}, j) + \sum _{i=k+1}^{n} \mathtt{R}(\varSigma _{i}, j) \le \mathtt{R}(\varPi , j) + \sum _{i=1}^{n} \mathtt{R}(\varSigma _{i}, j)\) for every \(j \ge 0\).

    • The case of (m) is not possible.

  2. ii.

     

    • The case of (Ax) is not possible.

    • Let \(\varPi \) end with an application of rule (w). If \(\varPi \) is

      then the proof follows by induction. Otherwise, let \(\varPi \) be

      where \(\tau \cong \tau _{1} \sqcup \tau _{2}\). Note that \(|\tau |=|\tau _{1}| + |\tau _{2}|\). By Lemma 5.i there are \(\varSigma _{1} {\,\triangleright \,}\varGamma _{1} \mid \varDelta _{1} \vdash \mathtt{N}: \tau _{1}\) and \(\varSigma _{2} {\,\triangleright \,}\varGamma _{2} \mid \varDelta _{2} \vdash \mathtt{N}: \tau _{2}\) such that \(\varGamma ' = \varGamma _{1} \sqcup \varGamma _{2}\) and \(\varDelta ' = \varDelta _{1} \sqcup \varDelta _{2}\); moreover, \(\mathtt{W}(\varSigma ,j) = \sum _{i=1}^{2} \frac{|\tau _{i}|}{ |\tau | } \cdot \mathtt{W}(\varSigma _{i},j)\) and \(\mathtt{R}(\varSigma , j) = \sum _{i=1}^{2} \mathtt{R}(\varSigma _{i}, j)\) for every \(j \ge 0\). By inductive hypothesis \({ \mathcal {S}^{\varSigma _{1}}_{\varPi '} {\,\triangleright \,}\varGamma _{1} \sqcup \varGamma \mid \varDelta _{1} \sqcup \varDelta \vdash \mathtt{M}[\mathtt{N}/ \mathtt{x}]: \sigma }\), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{1}}_{\varPi '},j) \le \mathtt{W}(\varPi ',j) + |\tau _{1}| \cdot \mathtt{W}(\varSigma _{1},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1}}_{\varPi '}, j) \le \mathtt{R}(\varPi ', j) + \mathtt{R}(\varSigma _{1}, j) \) for every \(j \ge 0\).

      Then \(\mathcal {S}^{\varSigma }_{\varPi } {\,\triangleright \,}\varGamma \sqcup \varGamma ' \mid \varDelta \sqcup \varDelta ' \vdash \mathtt{M}[\mathtt{N}/ \mathtt{x}]: \sigma \) is obtained from \(\mathcal {S}^{\varSigma _{1}}_{\varPi '}\) by applying rule (w), where \(\mathtt{W}(\mathcal {S}^{\varSigma }_{\varPi },j) = \mathtt{W}(\mathcal {S}^{\varSigma _{1}}_{\varPi '},j) = \mathtt{W}(\varPi ',j) + |\tau _{1}| \cdot \mathtt{W}(\varSigma _{1},j) \le \mathtt{W}(\varPi ,j) + |\tau | \cdot \mathtt{W}(\varSigma ,j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi }, j) = \mathtt{R}(\mathcal {S}^{\varSigma _{1}}_{\varPi '}, j) \le \mathtt{R}(\varPi ', j) + \mathtt{R}(\varSigma _{1}, j) \le \mathtt{R}(\varPi , j) + \mathtt{R}(\varSigma , j)\) for every \(j \ge 0\).

    • Let \(\varPi \) be

      where \(\mathtt{M}= \lambda \mathtt{y}. \mathtt{P}\).

      By the \(\alpha \)-rule we may assume that \(\mathtt{y}\not \in \mathtt{FV}(\mathtt{N})\). By inductive hypothesis \({ \mathcal {S}^{\varSigma }_{\varPi '} {\,\triangleright \,}\varGamma \sqcup \varGamma ', \mathtt{y}: [ \mathtt{A}] \mid \varDelta \sqcup \varDelta ' \vdash \mathtt{P}[\mathtt{N}/ \mathtt{x}]: \mu }\), where \(\mathtt{W}(\mathcal {S}^{\varSigma }_{\varPi '},j) \le \mathtt{W}(\varPi ',j) + |\tau | \cdot \mathtt{W}(\varSigma ,j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi '}, j) \le \mathtt{R}(\varPi ', j) + \mathtt{R}(\varSigma , j) \) for every \(j \ge 0\). Then \(\mathcal {S}^{\varSigma }_{\varPi } {\,\triangleright \,}\varGamma \sqcup \varGamma ' \mid \varDelta \sqcup \varDelta ' \vdash (\lambda \mathtt{y}. \mathtt{P})[\mathtt{N}/ \mathtt{x}]: \mathtt{A}\rightarrow \mu \) is obtained from \(\mathcal {S}^{\varSigma }_{\varPi '}\) by applying rule \((\rightarrow I)\), where \(\mathtt{W}(\mathcal {S}^{\varSigma }_{\varPi },j) \le \mathtt{W}(\varPi ,j) + | \tau | \cdot \mathtt{W}(\varSigma ,j)\) follows by the definition of weight and \(\mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi }, j) = \mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi '}, j) \le \mathtt{R}(\varPi ', j) + \mathtt{R}(\varSigma , j) = \mathtt{R}(\varPi , j) + \mathtt{R}(\varSigma , j)\) for every \(j \ge 0\).

      The case of \((\rightarrow I_{M})\) is similar.

    • Let \(\varPi \) end with an application of rule \((\rightarrow E)\) with premises \(\varPi _{1} {\,\triangleright \,}\varGamma _{1} \mid \varDelta _{1}, \mathtt{x}: \tau _{1} \vdash \mathtt{P}: \rho \rightarrow \sigma \) and \(\varPi _{2} {\,\triangleright \,}\varGamma _{2} \mid \varDelta _{2}, \mathtt{x}: \tau _{2} \vdash \mathtt{Q}: \rho \), where \(\tau \cong \tau _{1} \sqcup \tau _{2}\) and \(\mathtt{M}= \mathtt{P}\mathtt{Q}\). Note that \(|\tau |=|\tau _{1}| + |\tau _{2}|\). By Lemma 5.i, \(\varSigma {\,\triangleright \,}\varGamma ' \mid \varDelta ' \vdash \mathtt{N}: \tau \) implies there are \(\varSigma _{1} {\,\triangleright \,}\varGamma '_{1} \mid \varDelta '_{1} \vdash \mathtt{N}: \tau _{1}\) and \(\varSigma _{2} {\,\triangleright \,}\varGamma '_{2} \mid \varDelta '_{2} \vdash \mathtt{N}: \tau _{2}\) such that \(\varGamma ' = \varGamma '_{1} \sqcup \varGamma '_{2}\) and \(\varDelta ' = \varDelta '_{1} \sqcup \varDelta '_{2}\); moreover, \(\mathtt{W}(\varSigma ,j) = \sum _{i=1}^{2} \frac{|\tau _{i}|}{ |\tau | } \cdot \mathtt{W}(\varSigma _{i},j)\) and \(\mathtt{R}(\varSigma , j) = \sum _{i=1}^{2} \mathtt{W}(\varSigma _{i},j)\) for every \(j \ge 0\). By inductive hypothesis on \(\varPi _{1}\), there is a derivation \({ \mathcal {S}^{\varSigma _{1}}_{\varPi _{1}} {\,\triangleright \,}\varGamma _{1} \sqcup \varGamma '_{1} \mid \varDelta _{1} \sqcup \varDelta '_{1} \vdash \mathtt{P}[\mathtt{N}/ \mathtt{x}]: \rho \rightarrow \sigma }\), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{1}}_{\varPi _{1}},j) \le \mathtt{W}(\varPi _{1},j) + |\tau _{1}| \cdot \mathtt{W}(\varSigma _{1},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{1}}_{\varPi _{1}}, j) \le \mathtt{R}(\varPi _{1}, j) + \mathtt{R}(\varSigma _{1}, j)\) for every \(j \ge 0\). Similarly, by inductive hypothesis on \(\varPi _{2}\) there is \(\mathcal {S}^{\varSigma _{2}}_{\varPi _{2}} {\,\triangleright \,}\varGamma _{2} \sqcup \varGamma '_{2} \mid \varDelta _{2} \sqcup \varDelta '_{2} \vdash \mathtt{Q}[\mathtt{N}/ \mathtt{x}]: \rho \), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{2}}_{\varPi _{2}},j) \le \mathtt{W}(\varPi _{2},j) + |\tau _{2}| \cdot \mathtt{W}(\varSigma _{2},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{2}}_{\varPi _{2}}, j) \le \mathtt{R}(\varPi _{2}, j) + \mathtt{R}(\varSigma _{2}, j)\) for every \(j \ge 0\).

      Then \(\mathcal {S}^{\varSigma }_{\varPi } {\,\triangleright \,}\varGamma _{1} \sqcup \varGamma _{2} \sqcup \varGamma ' \mid \varDelta _{1} \sqcup \varDelta _{2} \sqcup \varDelta ' \vdash (\mathtt{P}\mathtt{Q})[\mathtt{N}/ \mathtt{x}]: \sigma \) is obtained by applying rule \((\rightarrow E)\) to \(\mathcal {S}^{\varSigma _{1}}_{\varPi _{1}}\) and \(\mathcal {S}^{\varSigma _{2}}_{\varPi _{2}}\), where \(\mathtt{W}(\mathcal {S}^{\varSigma }_{\varPi },j) \le \mathtt{W}(\varPi ,j) + |\tau _{1}| \cdot \mathtt{W}(\varSigma _{1},j) + |\tau _{2}| \cdot \mathtt{W}(\varSigma _{2},j) = \mathtt{W}(\varPi ,j) + |\tau | \cdot \mathtt{W}(\varSigma ,j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi }, j) = \mathtt{R}(\mathcal {S}^{\varSigma _{1}}_{\varPi _{1}}, j) + \mathtt{R}(\mathcal {S}^{\varSigma _{2}}_{\varPi _{2}}, j) \le \mathtt{R}(\varPi _{1}, j) + \mathtt{R}(\varSigma _{1}, j) + \mathtt{R}(\varPi _{2}, j) + \mathtt{R}(\varSigma _{2}, j) = \mathtt{R}(\varPi , j) + \mathtt{R}(\varSigma , j)\) for every \(j \ge 0\).

    • Let \(\varPi \) end with an application of rule (m): there are two possible cases.

      • Let \(\varPi \) be

        where \(\tau \cong [ \mathtt{A}^{1}_{1},\ldots ,\mathtt{A}^{h_{1}}_{1},\ldots , \mathtt{A}^{1}_{p},\ldots , \mathtt{A}^{h_{p}}_{p}]\) and \(\varDelta = \sqcup _{s=1}^{p} \varGamma _{s}, \sqcup _{s=1}^{p} [ \varDelta _{s} ]\). By hypothesis there is \(\varSigma {\,\triangleright \,}\varGamma ' \mid \varDelta ' \vdash \mathtt{N}: \tau \). By Lemma 5.ii, there are \(\varSigma _{s}^{r} {\,\triangleright \,}\varGamma _{s}^{r} \mid \varDelta _{s}^{r} \vdash \mathtt{N}: \mathtt{A}_{s}^{r}\) (\(1\le s \le p, 1\le r \le h_{s}\)) such that \(\varDelta ' = \sqcup _{s=1}^{p} ,_{r=1}^{h_{s}} \varGamma _{s}^{r}, \sqcup _{s=1}^{p} ,_{r=1}^{h_{s}} [ \varDelta _{s}^{r} ] \); moreover \(\mathtt{W}(\varSigma ,0) = \mathtt{R}(\varSigma , 0) = 0\), \(\mathtt{W}(\varSigma ,j+1) = \sum _{s=1}^{p} ,_{r=1}^{h_{s}} \frac{1}{|\tau |} \cdot \mathtt{W}(\varSigma _{s}^{r},j)\) and \({ \mathtt{R}(\varSigma , j+1) = \sum _{s=1}^{p} ,_{r=1}^{h_{s}} \mathtt{R}(\varSigma _{s}^{r}, j) }\) for every \(j \ge 0\). By Lemma 3.i, there are derivations \(\mathcal {S}^{\varSigma _{s}^{1},\ldots , \varSigma _{s}^{h_{s}}}_{\varPi _{s}} {\,\triangleright \,}\varGamma _{s} \sqcup _{r=1}^{h_{s}} \varGamma _{s}^{r} \mid \varDelta _{s} \sqcup _{r=1}^{h_{s}} \varDelta _{s}^{r} \vdash \mathtt{M}[ \mathtt{N}/ \mathtt{x}]: \sigma _{s}\), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{s}^{1},\ldots , \varSigma _{s}^{h_{s}}}_{\varPi _{s}},j) \le \mathtt{W}(\varPi _{s},j) + \sum _{r = 1}^{h_{s}} \mathtt{W}(\varSigma _{s}^{r},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{s}^{1},\ldots , \varSigma _{s}^{h_{s}}}_{\varPi _{s}}, j) \le \mathtt{R}(\varPi _{s}, j) + \sum _{r=1}^{h_{s}} \mathtt{R}(\varSigma _{s}^{r}, j)\) for every \(j \ge 0\) and \(1 \le s \le p\). Then \(\mathcal {S}^{\varSigma }_{\varPi } {\,\triangleright \,}\varGamma ' \mid \varDelta \sqcup \varDelta ' \vdash \mathtt{M}[ \mathtt{N}/ \mathtt{x}]: [ \sigma _{1},\ldots , \sigma _{n} ]\) is obtained by applying rule (m) to \(\mathcal {S}^{\varSigma _{s}^{1},\ldots , \varSigma _{s}^{h_{s}}}_{\varPi _{s}}\), for \(1 \le s \le p\), followed by a (possibly empty) sequence of rule (w) adding \(\varGamma '\), where \(\mathtt{W}(\mathcal {S}^{\varSigma }_{\varPi },0) = \mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi }, 0) = 0\), \( \mathtt{W}(\mathcal {S}^{\varSigma }_{\varPi },j+1) = \sum _{s=1}^{p} \frac{|\sigma _{s}|}{|\sigma |} \cdot \mathtt{W}(\mathcal {S}^{\varSigma _{s}^{1},\ldots , \varSigma _{s}^{h_{s}}}_{\varPi _{s}},j) \le \sum _{s=1}^{p} \frac{|\sigma _{s}|}{|\sigma |} \cdot ( \mathtt{W}(\varPi _{s},j) + \sum _{r = 1}^{h_{s}} \mathtt{W}(\varSigma _{s}^{r},j) ) = \mathtt{W}(\varPi ,j+1) + \sum _{s=1}^{p} \frac{|\sigma _{s}|}{|\sigma |} \cdot \sum _{r = 1}^{h_{s}} \mathtt{W}(\varSigma _{s}^{r},j) \le \mathtt{W}(\varPi ,j+1) + \sum _{s=1}^{p} ,_{r = 1}^{h_{s}} \mathtt{W}(\varSigma _{s}^{r},j) \le \mathtt{W}(\varPi ,j+1) + | \tau | \cdot \mathtt{W}(\varSigma ,j+1) \) and \(\mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi }, j+1) = \sum _{s=1}^{p} \mathtt{R}(\mathcal {S}^{\varSigma _{s}^{1},\ldots , \varSigma _{s}^{h_{s}}}_{\varPi _{s}}, j) \le \sum _{s=1}^{p} \mathtt{R}(\varPi _{s}, j) + \sum _{s=1}^{p} ,_{r=1}^{h_{s}} \mathtt{R}(\varSigma _{s}^{r}, j) = \mathtt{R}(\varPi , j+1) + \mathtt{R}(\varSigma , j+1)\) for every \(j \ge 0\).

      • Let \(\varPi \) be

        where \(\varDelta = \sqcup _{s=1}^{p} \varGamma _{s}, \sqcup _{s=1}^{p} [ \varDelta _{s} ]\) and \(\tau \cong [ \tau _{1},\ldots , \tau _{s} ]\).

        By hypothesis there is \(\varSigma {\,\triangleright \,}\varGamma ' \mid \varDelta ' \vdash \mathtt{N}: \tau \). By Lemma 5.ii, there are \(\varSigma _{s} {\,\triangleright \,}\varGamma '_{s} \mid \varDelta '_{s} \vdash \mathtt{N}: \tau _{s}\) (\(1\le s \le p\)) such that \(\varDelta ' = \sqcup _{s=1}^{p} \varGamma '_{s}, \sqcup _{s=1}^{p} [ \varDelta '_{s} ]\); moreover \(\mathtt{W}(\varSigma ,0) = \mathtt{R}(\varSigma , 0) = 0\), \(\mathtt{W}(\varSigma ,j+1) = \sum _{s=1}^{p} \frac{|\tau _{s}|}{|\tau |} \cdot \mathtt{W}(\varSigma _{s},j)\) and \({ \mathtt{R}(\varSigma , j+1) = \sum _{s=1}^{p} \mathtt{R}(\varSigma _{s}, j) }\) for every \(j \ge 0\).

        By inductive hypothesis, there are \(\mathcal {S}^{\varSigma _{s}}_{\varPi _{s}} {\,\triangleright \,}\varGamma _{s} \sqcup \varGamma '_{s} \mid \varDelta _{s} \sqcup \varDelta '_{s} \vdash \mathtt{M}[ \mathtt{N}/ \mathtt{x}]: \sigma _{s}\), where \(\mathtt{W}(\mathcal {S}^{\varSigma _{s}}_{\varPi _{s}},j) \le \mathtt{W}(\varPi _{s},j) + |\tau _{s}| \cdot \mathtt{W}(\varSigma _{s}^{r},j)\) and \(\mathtt{R}(\mathcal {S}^{\varSigma _{s}}_{\varPi _{s}}, j) \le \mathtt{R}(\varPi _{s}, j) + \mathtt{R}(\varSigma _{s}, j)\) for every \(j \ge 0\) and \(1 \le s \le p\).

        Then \(\mathcal {S}^{\varSigma }_{\varPi } {\,\triangleright \,}\varGamma ' \mid \varDelta \sqcup \varDelta ' \vdash \mathtt{M}[ \mathtt{N}/ \mathtt{x}]: [ \sigma _{1},\ldots , \sigma _{n} ]\) is obtained by applying rule (m) to \(\mathcal {S}^{\varSigma _{1}}_{\varPi _{1}},\ldots , \mathcal {S}^{\varSigma _{p}}_{\varPi _{p}}\), followed by a (possibly empty) sequence of applications of rule (w) adding \(\varGamma '\), where \(\mathtt{W}(\mathcal {S}^{\varSigma }_{\varPi },0) = \mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi }, 0) = 0\), \( \mathtt{W}(\mathcal {S}^{\varSigma }_{\varPi },j+1) = \sum _{s=1}^{p} \frac{|\sigma _{s}|}{|\sigma |} \cdot \mathtt{W}(\mathcal {S}^{\varSigma _{s}}_{\varPi _{s}},j) \le \sum _{s=1}^{p} \frac{|\sigma _{s}|}{|\sigma |} \cdot ( \mathtt{W}(\varPi _{s},j) + |\tau _{s}| \cdot \mathtt{W}(\varSigma _{s},j) ) = \mathtt{W}(\varPi ,j+1) + \sum _{s=1}^{p} \frac{|\sigma _{s}|}{|\sigma |} \cdot |\tau _{s}| \cdot \mathtt{W}(\varSigma _{s},j) \le \mathtt{W}(\varPi ,j+1) + \sum _{s=1}^{p} |\tau _{s}| \cdot \mathtt{W}(\varSigma _{s},j) = \mathtt{W}(\varPi ,j+1) + | \tau | \cdot \mathtt{W}(\varSigma ,j+1) \) by Lemma 5.ii, and \(\mathtt{R}(\mathcal {S}^{\varSigma }_{\varPi }, j+1) = \sum _{s=1}^{p} \mathtt{R}(\mathcal {S}^{\varSigma _{s}}_{\varPi _{s}}, j) \le \sum _{s=1}^{p} \mathtt{R}(\varPi _{s}, j) + \sum _{s=1}^{p} \mathtt{R}(\varSigma _{s}, j) = \mathtt{R}(\varPi , j+1) + \mathtt{R}(\varSigma , j+1)\) for every \(j \ge 0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

De Benedetti, E., Ronchi Della Rocca, S. (2016). Call-by-Value, Elementary Time and Intersection Types. In: van Eekelen, M., Dal Lago, U. (eds) Foundational and Practical Aspects of Resource Analysis. FOPARA 2015. Lecture Notes in Computer Science(), vol 9964. Springer, Cham. https://doi.org/10.1007/978-3-319-46559-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46559-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46558-6

  • Online ISBN: 978-3-319-46559-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics