Construction of a 3D Geometric Model of a Presynaptic Bouton for Use in Modeling of Neurotransmitter Flow | SpringerLink
Skip to main content

Construction of a 3D Geometric Model of a Presynaptic Bouton for Use in Modeling of Neurotransmitter Flow

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9972))

Included in the following conference series:

Abstract

This paper refers strongly to mathematical modeling of diffusive process in a presynaptic bouton. Creation of a robust three-dimensional model of the bouton geometry is the topic of the paper. Such a model is necessary for partial differential equations that describe the aforementioned flows. The proposed geometric model is based on ultrathin sections obtained by using electron microscopy. The data structure which describes the surface of the whole bouton as well as the surfaces of some internal organelles is created as the result of the modeling procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AutoDesk 3DS max software. http://www.autodesk.pl/products/3ds-max/

  2. Bielecki, A., Kalita, P.: Model of neurotransmitter fast transport in axon terminal of presynaptic neuron. J. Math. Biol. 56, 559–576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bielecki, A., Kalita, P., Lewandowski, M., Siwek, B.: Numerical simulation for a neurotransmitter transport model in the axon terminal of a presynaptic neuron. Biol. Cybern. 102, 489–502 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bielecki, A., Kalita, P., Lewandowski, M., Skomorowski, M.: Compartment model of neuropeptide synaptic transport with impulse control. Biol. Cybern. 99, 443–458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bielecki, A., Kalita, P.: Dynamical properties of the reaction-diffusion type model of fast synaptic transport. J. Math. Anal. Appl. 393, 329–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobrowski, A.: Boundary conditions in evolutionary equations in biology. In: Banasiak, J., Mokhtar-Kharroubi, M. (eds.) Evolutionary Equations with Applications in Natural Sciences. LNM, vol. 2126, pp. 47–92. Springer, Heidelberg (2015). doi:10.1007/978-3-319-11322-7_2

    Google Scholar 

  7. Bobrowski, A., Morawska, K.: From a PDE model to an ODE model of dynamics of synaptic depression. Discrete Continuous Dyn. Syst. Ser. B 17, 2313–2327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bui, L., Glavinovic, M.: Synaptic activity slows vesicular replenishment at excitatory synapses of rat hippocampus. Cogn. Neurodyn. 7, 105–120 (2013)

    Article  Google Scholar 

  9. Bui, L., Glavinovic, M.: Is replenishment of the readily releasable pool associated with vesicular movement? Cogn. Neurodyn. 8, 99–110 (2014)

    Article  Google Scholar 

  10. Bui, L., Glavinovic, M.: Temperature dependence of vesicular dynamics at excitatory synapses of rat hippocampus. Cogn. Neurodyn. 8, 277–286 (2014)

    Article  Google Scholar 

  11. Burger, B., Bettinghausen, S., Hesser, R., Hesser, J.: Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Trans. Med. Imaging 32(3), 609–618 (2013)

    Article  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems (Classics in Applied Mathematics). 2nd edn. Society for Industrial and Applied Mathematics (SIAM) (2002)

    Google Scholar 

  13. Derakhshani, D., Munn, R.L.: Introducing 3ds Max 9: 3D for Beginners. pp. 164–177 (2007). ISBN 9781118058541

    Google Scholar 

  14. Hang, S.: TetGen: a quality tetrahedral mesh generator and 3D delaunay triangulator, version 1.4 user manual. WIAS - Weierstrass Institute for Applied Analysis and Stochastics (WIAS) (2006)

    Google Scholar 

  15. Hang, S.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), (2015). Article 11

    Google Scholar 

  16. Hughes, J.F., van Dam, A., McGuire, M., Sklar, D.F., Foley, J.D., Feiner, S.K., Akeley, K.: Computer Graphics: Principles and Practice, 3rd edn. Addison-Wesley Professional, Boston (2013)

    Google Scholar 

  17. Knodel, M.M., Geiger, R., Ge, L., Bucher, D., Grillo, A., Wittum, G., Schuster, C., Queisser, G.: Synaptic bouton properties are tuned to best fit the prevailing firing pattern. Front. Comput. Neurosci. 8, Article 101 (2014)

    Google Scholar 

  18. Miller, G., Talmor, D., Teng, S.H., Walkington, N., Wang, H.: Control volume meshes using sphere packing: generation, refinement and coarsening. In: Proceedings of the Fifth International Meshing Roundtable, pp. 47–61 (1996)

    Google Scholar 

  19. Murray, J.D., Van Ryper, W.: Encyclopedia of Graphics File Formats, 2nd edn. O’Reilly Media, USA (1996)

    Google Scholar 

  20. Oñate, E., Rojek, J., Taylor, R., Zienkiewicz, O.: Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int. J. Numer. Methods Eng. 59, 1473–1500 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saleewong, T., Srikiatkhachorn, A., Maneepark, M., Chonwerayuth, A., Bongsebandhu-Ghubhakdi, S.: Quantyfying altered long-term potential in the CA1 hippocampus. J. Integr. Neurosci. 11, 243–264 (2012)

    Article  Google Scholar 

  22. Trayanova, N.A.: Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ. Res. 108(1), 113–128 (2011)

    Article  Google Scholar 

  23. Wilhelm, B.G.: Stoichiometric biology of the synapse. Dissertation in partial fulfillment of the requirements for the degree “Doctor of Natural Sciences (Dr. rer. nat)” in the Neuroscience Program at the Georg August University Göttingen, Faculty of Biology, Göttingen, Germany (2013)

    Google Scholar 

  24. Wilhelm, B.G., Mandad, S., Truckenbrodt, S., Kröhnert, K., Schäfer, C., Rammner, B., Seong, J.K., Gala, A.C., Krauss, M., Haucke, V., Urlaub, H., Rizzoli, S.O.: Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The work of Piotr Kalita has been supported by the National Science Center of Poland under the Maestro Advanced Project No. DEC-2012/06/A/ST1/00262.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Gierdziewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bielecki, A., Gierdziewicz, M., Kalita, P., Szostek, K. (2016). Construction of a 3D Geometric Model of a Presynaptic Bouton for Use in Modeling of Neurotransmitter Flow. In: Chmielewski, L., Datta, A., Kozera, R., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2016. Lecture Notes in Computer Science(), vol 9972. Springer, Cham. https://doi.org/10.1007/978-3-319-46418-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46418-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46417-6

  • Online ISBN: 978-3-319-46418-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics