Link Prediction on Tweets’ Content | SpringerLink
Skip to main content

Link Prediction on Tweets’ Content

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2016)

Abstract

In this paper we test various weighted local similarity network measures for predicting the future content of tweets. Our aim is to determine the most suitable measure for predicting new content in tweets and subsequently explore the spreading positively and negatively oriented content on Twitter. The tweets in the English language were collected via the Twitter API depending on their content. That is, we searched for the tweets containing specific predefined keywords from different domains - positive or negative. From the gathered tweets the weighted complex network of words is formed, where nodes represent words and a link between two nodes exists if these two words co-occur in the same tweet, while the weight denotes the co-occurrence frequency. For the link prediction task we study five local similarity network measures commonly used in unweighted networks (Common Neighbors, Jaccard Coefficient, Preferential Attachment, Adamic Adar and Resource Allocation Index) which we have adapted to weighted networks. Finally, we evaluated all the modified measures in terms of the precision of predicted links. The obtained results suggest that the Weighted Resource Allocation Index has the best potential for the prediction of content in tweets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Stopwords are a list of the most common, short function words that do not carry strong semantic properties, but are needed for the syntax of a language (pronouns, prepositions, conjunctions, abbreviations, ...).

References

  1. Twitter - Wikipedia, the free encyclopedia. 20-Feb-2016. https://en.wikipedia.org/wiki/Twitter. Accessed 21 Feb 2016

  2. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope. arXiv:0812.1045 [physics] (2008)

  3. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence in twitter: the million follower fallacy. In: ICWSM, vol. 10, pp. 10–17 (2010)

    Google Scholar 

  4. Bollen, J., Mao, H., Zeng, X.J.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    Article  Google Scholar 

  5. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Fourth International AAAI Conference on Weblogs and Social Media (2010)

    Google Scholar 

  6. Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: conversational aspects of retweeting on twitter. In: 2010 43rd Hawaii International Conference on System Sciences (HICSS), pp. 1–10 (2010)

    Google Scholar 

  7. Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 1155–1158 (2010)

    Google Scholar 

  8. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project. Report 1, 12 (2009)

    Google Scholar 

  9. Lu, L., Zhou, T.: Role of Weak Ties in Link Prediction of Complex Networks. arXiv:0907.1728 [cs] (2009)

  10. De Sá, H.R., Prudêncio, R.B.: Supervised link prediction in weighted networks. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2281–2288 (2011)

    Google Scholar 

  11. Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods. Knowl. Inf. Syst. 45(3), 751–782 (2015)

    Article  Google Scholar 

  12. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, pp. 2200–2204 (2010)

    Google Scholar 

  13. GET search/tweets — Twitter Developers. https://dev.twitter.com/rest/reference/get/search/tweets. Accessed 21 Feb 2016

  14. Schult, D.A., Swart, P.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conferences (SciPy 2008), pp. 11–16 (2008)

    Google Scholar 

  15. Margan, D., Meštrović, A.: LaNCoA: a python toolkit for language networks construction and analysis. In: International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1628–1633 (2015)

    Google Scholar 

  16. Yuan, G., Murukannaiah, P.K., Zhang, Z., Singh, M.P.: Exploiting sentiment homophily for link prediction. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 17–24 (2014)

    Google Scholar 

  17. Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in twitter. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 57–58

    Google Scholar 

  18. Shi, L., Agarwal, N., Agrawal, A., Garg, R., Spoelstra, J.: Predicting US primary elections with Twitter (2012)

    Google Scholar 

  19. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: what 140 characters reveal about political sentiment. In: ICWSM, vol. 10, pp. 178–185

    Google Scholar 

  20. Liben-Nowel, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the CKIM, pp. 556–559 (2003)

    Google Scholar 

  21. Burnap, P., Gibson, R., Sloan, L., Southern, R., Williams, M.: 140 characters to victory?: Using Twitter to predict the UK 2015 General Election. arXiv:1505.01511 [physics] (2015)

  22. Singla, P., Richardson, M.: Yes, there is a correlation: from social networks to personal behavior on the Web. In: Proceedings of the 17th International Conference on World Wide Web, pp. 655–664 (2008)

    Google Scholar 

  23. Valverde-Rebaza, J., de Andrade Lopes, A.: Exploiting behaviors of communities of twitter users for link prediction. Soc. Netw. Anal. Mining 3(4), 1063–1074 (2013)

    Google Scholar 

  24. Bliss, C.A., Frank, M.R., Danforth, C.M., Dodds, P.S.: An evolutionary algorithm approach to link prediction in dynamic social networks. J. Comput. Sci. 5(5), 750–764 (2011)

    Article  MathSciNet  Google Scholar 

  25. Lu, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390(6), 1150–1170 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanda Martinčić-Ipšić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Martinčić-Ipšić, S., Močibob, E., Meštrović, A. (2016). Link Prediction on Tweets’ Content. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46254-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46253-0

  • Online ISBN: 978-3-319-46254-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics