Abstract
In this paper, we present the analysis of a normalized and representative spontaneous Arabic speech corpus with labeling and annotation, in order to provide a complete library of voice segments and their respective prosodic parameters at different levels (phonemic or syllabic). A statistical analysis was conducted afterwards to determine and normalize the distribution of the collected data. The obtained results were then compared to those of a prepared Arabic speech corpus, in order to determine the characteristics of each kind of speech corpus and its suitable application area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Hamid, O., Abdou, S.M., Rashwan, M.: Improving Arabic HMM based speech synthesis quality. In: INTERSPEECH (2006)
Al-Ani, S.: Arabic phonology: an acoustical and a physilogical investigation. Walter de Gruyter (1970)
Boersma, P., Weenink, D.: Praat: doing phonetics by computer (2010)
Boudraa, M., Boudraa, B., Guerin, B.: Elaboration d’une base de données arabe phonétiquement équilibrée. In: Actes du colloque Langue Arabe et Technologies Informatiques Avancées, pp. 171–187 (1993)
Campbell, W.N.: Predicting segmental durations for accommodation within a syllable-level timing framework. In: 3rd European Conference on Speech Communication and Technology (1993)
Ghasemi, A., Zahediasl, S.: Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metabol. 10(2), 486–489 (2012)
Ladd, D.R.: Intonational Phonology. Cambrige University Press, Cambrige (1986)
Markose, S., Alentorn, A.: The Generalized extreme value distribution and extreme economic value at risk (EE-VaR). In: Kontoghiorghes, E., Rustem, B., Winker, P. (eds.) Computational Methods in Financial Engineering. Springer, Berlin (2008)
Mixdorff, H., Jokisch, O.: An integrated approach to modeling German prosody. Int. J. Speech Technol. 6(1), 45–55 (2003)
Mnasri, Z., Boukadida, F., Ellouze, N.: Design and development of a prosody generator for Arabic TTS systems. Int. J. Comput. Appl. 12(1), 24–31 (2010)
Vainio, M., et al.: Artificial neural networks based prosody models for Finnish text-to-speech synthesis. Ph.D. thesis, Helsinky University of Technology (2001)
Van Santen, J.: Assignement of segmental duration in text-to-speech synthesis. Comput. Speech Lang. 8(2), 95–128 (1994)
Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T., Black, A.W., Tokuda, K.: The HMM-based speech synthesis system (HTS) version 2.0. In: SSW, pp. 294–299. Citeseer (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Hadj Ali, I., Mnasri, Z. (2016). Statistical Analysis of the Prosodic Parameters of a Spontaneous Arabic Speech Corpus for Speech Synthesis. In: Král, P., Martín-Vide, C. (eds) Statistical Language and Speech Processing. SLSP 2016. Lecture Notes in Computer Science(), vol 9918. Springer, Cham. https://doi.org/10.1007/978-3-319-45925-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-45925-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45924-0
Online ISBN: 978-3-319-45925-7
eBook Packages: Computer ScienceComputer Science (R0)