Toward Multi Criteria Optimization of Business Processes Design | SpringerLink
Skip to main content

Toward Multi Criteria Optimization of Business Processes Design

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9893))

Included in the following conference series:

Abstract

In enterprise, optimization is seen as making business decisions by varying some parameters to maximize profit and reduce loss. We focus on business processes design optimization. It is known as the problem of creating feasible business processes while optimizing their criteria such as resource cost and execution time. In this paper, we propose an approach that focuses on tasks composing a business process, their resources and attributes rather than a full representation of a business process for its evaluation according to certain criteria. The main contribution of this work is a framework capable of (i) generating business processes using an enhanced version of evolutionary algorithm NSGAII. (ii) Verifying the feasibility of each business process created using an effective algorithm. At last, (iii) selecting Pareto optimal solutions in a multi criteria optimization environment up to three criteria, using an effectual fitness function. The experimental results showed that our proposal generates efficient business processes in terms of qualitative parameters compared with existing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Non-dominated Sorting Genetic Algorithm.

  2. 2.

    Hajela's and Link Genetic Algorithm.

  3. 3.

    Non-dominated Sorting Genetic Algorithm II.

  4. 4.

    Strength Pareto Evolutionary Algorithm 2.

  5. 5.

    Pareto Envelope-based Selection Algorithm 2.

  6. 6.

    Pareto Archived Evolution Strategy.

  7. 7.

    Multi-objective Particle Swarm Optimization Algorithm.

  8. 8.

    Ant Colony Optimization.

  9. 9.

    Bee Colony Optimization.

References

  1. Porter, M.E.: Competitive Strategy: Techniques for Analyzing Industries and Competitors. The Free Press, New York (1980)

    Google Scholar 

  2. Dahman, K.: Gouvernance et Etude de L’impact du Changement des Processus Métiers sur les Architectures Orientées Services. Ph.D. thesis. University of Lorraine (2012)

    Google Scholar 

  3. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Business Revolution. HarperCollins, New York (1993). 35 p.

    Google Scholar 

  4. Salomie, I., Chifu, V.R., Pop, C.B., Suciu, R.: Firefly-based business process optimization. In: IEEE Conference on Intelligent Computer Communication and Processing, pp. 49–56 (2012)

    Google Scholar 

  5. Tiwari, A., Vergidis, K., Turner, C.: Evolutionary multi-objective optimisation of business processes. In: Gao, X.-Z., Gaspar-Cunha, A., Köppen, M., Schaefer, G., Wang, J. (eds.) Soft Computing in Industrial Applications. AISC, vol. 75, pp. 293–301. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Hofacker, I., Vetschera, R.: Algorithmical approaches to business process design. Comput. Oper. Res. 28, 1253–1275 (2001)

    Article  MATH  Google Scholar 

  7. Zhou, Y., Chen, Y.: Business process assignment optimization. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3 (2002)

    Google Scholar 

  8. Zhou, Y., Chen, Y.: Project-oriented business process performance optimization. In: Proceedings of Industrial Electronics Conference (2003)

    Google Scholar 

  9. Tiwari, A., Vergidis, K., Turner, C.: Evolutionary multi-objective optimization of business processes. In: IEEE Congress on Evolutionary Computation, pp. 3091–3097 (2006)

    Google Scholar 

  10. Vergidis, K., Tiwari, A., Majeed, B.: Business process improvement using multi-objective optimisation. BT Technol. J. 24(2), 229 (2006)

    Article  Google Scholar 

  11. Vergidis, K., Tiwari, A.: Business process design and attribute optimization within an evolutionary framework. In: Congress on Evolutionary Computing, pp. 668–675 (2008)

    Google Scholar 

  12. Tiwari, A., Turner, C., Ball, P., Vergidis, K.: Multi-objective optimisation of web business processes. In: Bhattacharya, A., Chakraborti, N., et al. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 573–577. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Vergidis, K., Tiwari, A., Saxena, D.: An evolutionary multi-objective framework for business process optimisation. Appl. Soft Comput. 12, 2638–2653 (2012)

    Article  Google Scholar 

  14. Vergidis, K., Turner, C., Alechnovic, A., Tiwari, A.: An automated optimization framework for the development of re-configurable business processes: a web services approach. Int. J. Comput. Integr. Manuf. 28, 41–58 (2015)

    Article  Google Scholar 

  15. Pop, C.B., Chifu, V.R., Salomie, I., Kovacs, T., Niculici, A.N., Suia, D.S.: Business process optimization using bio-inspired methods - ants or bees intelligence. In: IEEE International Conference on Intelligent Computer Communication and Processing, pp. 65–71 (2012)

    Google Scholar 

  16. Wibig, M.: Dynamic programming and genetic algorithm for business processes optimization. Int. J. Intell. Syst. Appl. 5, 44–51 (2013)

    Google Scholar 

  17. Farsani, S.T., Aboutalebi, M., Motameni, H.: Customizing NSGAII to optimize business processes designs. Res. J. Recent Sci. 2, 74–79 (2013)

    Article  Google Scholar 

  18. Malihi, E., Aghdasi, M.: A decision framework for optimisation of business processes aligned with business goals. Int. J. Bus. Inf. Syst. 15, 22–42 (2014)

    Google Scholar 

  19. Bae, H., Lee, S., Moon, I.: Planning of business process execution in business process management environments. Inf. Sci. 268, 357–369 (2014)

    Article  Google Scholar 

  20. Molka, T., Redlich, D., Gilani, W., Zeng, X.-J., Drobek, M.: Evolutionary computation based discovery of hierarchical business process models. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 191–204. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Drake, R.F.: Working backwards is a forward step in the solution of problems by dimensional analysis. J. Chem. Educ. 62, 414 (1985)

    Article  Google Scholar 

  22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and Elitist multi-objective genetic algorithm: NSGAII. Evol. Comput. IEEE 6, 182–197 (2002)

    Article  Google Scholar 

  23. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6, 157–160 (1994)

    Article  MATH  Google Scholar 

  24. Mason, S.J., Kurz, M.E., Pfund, M.E., Fowler, J.W., Pohl, L.M.: Multi-objective semiconductor manufacturing scheduling: a random keys implementation of NSGA II. In: Symposium on Computational Intelligence in Scheduling, pp. 159–164. IEEE (2007)

    Google Scholar 

  25. Zheng, F., Simpson, A.R., Zecchin, A.C.: An efficient hybrid approach for multiobjective optimization of water distribution systems. Water Resour. Res. 50(5), 3650–3671 (2014)

    Article  Google Scholar 

  26. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17, 487–525 (2011)

    Article  Google Scholar 

  27. Vekaria, K., Clack, C.: Selective crossover in genetic algorithms: an empirical study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 438–447. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  28. Verkaria, K.: Selective crossover as an adaptive strategy for genetic algorithms. Ph.D. thesis, Department of Computer Science, University College London (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Mahammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mahammed, N., Benslimane, S.M. (2016). Toward Multi Criteria Optimization of Business Processes Design. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J., Aït-Ameur, Y. (eds) Model and Data Engineering. MEDI 2016. Lecture Notes in Computer Science(), vol 9893. Springer, Cham. https://doi.org/10.1007/978-3-319-45547-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45547-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45546-4

  • Online ISBN: 978-3-319-45547-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics