Mining Medical Knowledge Bases | SpringerLink
Skip to main content

Mining Medical Knowledge Bases

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9876))

Included in the following conference series:

  • 2151 Accesses

Abstract

In this work, the topic of applying clustering as a knowledge extraction method from real-world data is discussed. The authors propose hierarchical clustering and treemap visualization techniques for knowledge base representation in the context of medical knowledge bases, for which data mining techniques are successfully employed and may resolve different problems. The authors analyze the impact of different clustering parameters on the result of searching through such a structure. Particular attention was also given to clusters description. The authors examined how selected inter-cluster and inter-object similarity measures influence clusters representatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazan, J., Szczuka, M.S., Wróblewski, J.: A new version of rough set exploration system. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Berka, P., Rauch, J., Zighed, D.A.: Medical Information Science Refererence. Hershey, New York (2009)

    Google Scholar 

  3. Buchanan, B.G., Shortliffe, E.H.: Rule-Based Expert Systems the MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley Publishing Company, Reading (1984)

    Google Scholar 

  4. Doreswamy M. G., Hemanth. K.S.: A study on similarity measure functions on engineering materials selection. Soft Comput. Appl. 1(3) (2011)

    Google Scholar 

  5. Lichman, M.: UCI machine learning repository. University of California (2013). http://archive.ics.uci.edu/ml

  6. Nguyen, T., Perkins, W., Laffey, T., Pecora, D.: Knowledge base verification. AI Magaz. 8(2), 69–75 (1987)

    Google Scholar 

  7. Nowak-Brzezińska, A., Jach, T.: Wnioskowanie w systemach z wiedza niepewna. Studia Informatica. Wydawnictwo Politechniki Slaskiej, Gliwice (2011)

    Google Scholar 

  8. Nowak-Brzezińska, A., Rybotycki, T.: Visualization of medical rule-based knowledge bases. J. Med. Inf. Technol. 24, 91–98 (2015)

    Google Scholar 

  9. Nowak-Brzezińska, A., Xiȩski, T.: Exploratory clustering and visualization. Procedia Comput. Sci. 35C, 1082–1091 (2014). Elsevier

    Article  Google Scholar 

  10. Przybyła-Kasperek, M., Wakulicz-Deja, A.: Global decisions taking on the basis of dispersed medical data. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS, vol. 8170, pp. 355–365. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Rybotycki, T.: Wizualizacja struktur hierarchicznych dla regulowych baz wiedzy, Engineer Thesis. Sosnowiec (2015)

    Google Scholar 

  12. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. Trans. Graphics (TOG) 11(1), 92–99 (1992). Association for Computing Machinery, New York

    Article  MATH  Google Scholar 

  13. Siminski, R., Xiȩski, T.: Physical knowledge base representation for web expert system shell. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D., Mangai, J.A. (eds.) BDAS 2016. CCIS, vol. 613, pp. 558–570. Springer, Heidelberg (2016). doi:10.1007/978-3-319-34099-9_43

    Chapter  Google Scholar 

  14. Turban, E., Aronson, J.E.: Decision Support Systems and Intelligent Systems, 6th edn. Prentice International Hall, Hong Kong (2001)

    Google Scholar 

  15. Wetzel, K.: Pebbles - using circular treemaps to visualize disk usage (2004)

    Google Scholar 

  16. Wierzchoń, S., Kłopotek, M.: Algorithms of Cluster Analysis Wyd. IPI PAN, Warszawa (2015)

    Google Scholar 

Download references

Acknowledgement

This work is a part of the project “Exploration of rule knowledge bases” founded by the Polish National Science Centre (NCN: 2011/03/D/ST6/03027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Nowak-Brzezińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nowak-Brzezińska, A., Rybotycki, T., Simiński, R., Przybyła-Kasperek, M. (2016). Mining Medical Knowledge Bases. In: Nguyen, N., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2016. Lecture Notes in Computer Science(), vol 9876. Springer, Cham. https://doi.org/10.1007/978-3-319-45246-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45246-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45245-6

  • Online ISBN: 978-3-319-45246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics