Abstract
In this work, the topic of applying clustering as a knowledge extraction method from real-world data is discussed. The authors propose hierarchical clustering and treemap visualization techniques for knowledge base representation in the context of medical knowledge bases, for which data mining techniques are successfully employed and may resolve different problems. The authors analyze the impact of different clustering parameters on the result of searching through such a structure. Particular attention was also given to clusters description. The authors examined how selected inter-cluster and inter-object similarity measures influence clusters representatives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bazan, J., Szczuka, M.S., Wróblewski, J.: A new version of rough set exploration system. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)
Berka, P., Rauch, J., Zighed, D.A.: Medical Information Science Refererence. Hershey, New York (2009)
Buchanan, B.G., Shortliffe, E.H.: Rule-Based Expert Systems the MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley Publishing Company, Reading (1984)
Doreswamy M. G., Hemanth. K.S.: A study on similarity measure functions on engineering materials selection. Soft Comput. Appl. 1(3) (2011)
Lichman, M.: UCI machine learning repository. University of California (2013). http://archive.ics.uci.edu/ml
Nguyen, T., Perkins, W., Laffey, T., Pecora, D.: Knowledge base verification. AI Magaz. 8(2), 69–75 (1987)
Nowak-Brzezińska, A., Jach, T.: Wnioskowanie w systemach z wiedza niepewna. Studia Informatica. Wydawnictwo Politechniki Slaskiej, Gliwice (2011)
Nowak-Brzezińska, A., Rybotycki, T.: Visualization of medical rule-based knowledge bases. J. Med. Inf. Technol. 24, 91–98 (2015)
Nowak-Brzezińska, A., Xiȩski, T.: Exploratory clustering and visualization. Procedia Comput. Sci. 35C, 1082–1091 (2014). Elsevier
Przybyła-Kasperek, M., Wakulicz-Deja, A.: Global decisions taking on the basis of dispersed medical data. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS, vol. 8170, pp. 355–365. Springer, Heidelberg (2013)
Rybotycki, T.: Wizualizacja struktur hierarchicznych dla regulowych baz wiedzy, Engineer Thesis. Sosnowiec (2015)
Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. Trans. Graphics (TOG) 11(1), 92–99 (1992). Association for Computing Machinery, New York
Siminski, R., Xiȩski, T.: Physical knowledge base representation for web expert system shell. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D., Mangai, J.A. (eds.) BDAS 2016. CCIS, vol. 613, pp. 558–570. Springer, Heidelberg (2016). doi:10.1007/978-3-319-34099-9_43
Turban, E., Aronson, J.E.: Decision Support Systems and Intelligent Systems, 6th edn. Prentice International Hall, Hong Kong (2001)
Wetzel, K.: Pebbles - using circular treemaps to visualize disk usage (2004)
Wierzchoń, S., Kłopotek, M.: Algorithms of Cluster Analysis Wyd. IPI PAN, Warszawa (2015)
Acknowledgement
This work is a part of the project “Exploration of rule knowledge bases” founded by the Polish National Science Centre (NCN: 2011/03/D/ST6/03027).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Nowak-Brzezińska, A., Rybotycki, T., Simiński, R., Przybyła-Kasperek, M. (2016). Mining Medical Knowledge Bases. In: Nguyen, N., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2016. Lecture Notes in Computer Science(), vol 9876. Springer, Cham. https://doi.org/10.1007/978-3-319-45246-3_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-45246-3_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45245-6
Online ISBN: 978-3-319-45246-3
eBook Packages: Computer ScienceComputer Science (R0)