Conceptual Model of Cyberphysical Environment Based on Collaborative Work of Distributed Means and Mobile Robots | SpringerLink
Skip to main content

Conceptual Model of Cyberphysical Environment Based on Collaborative Work of Distributed Means and Mobile Robots

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9812))

Included in the following conference series:

Abstract

In this paper, we propose a conceptual model of a cyberphysical environment based on a new approach to distribution of sensor, network, computing, information-control and service tasks between mobile robots, embedded devices, mobile client devices, stationary service equipment, and cloud computing and information resources. The task of structural-parametric synthesis of the corresponding cyberphysical system is formalized. Methods of integer-valued programming are used for the task solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, B., Li, X., Wan, B., Wang, C., Zhou, X., Chen, X.: Definitions of predictability for cyber physical systems. J. Syst. Archit. (2016). doi:10.1016/j.sysarc.2016.01.007

    Google Scholar 

  2. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Syst. 28, 157–177 (2004). Kirner, R., Puschner, P.: Time-predictable computing. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T. (eds.) SEUS 2010. LNCS, vol. 6399, pp. 23–34. Springer, Heidelberg (2011)

    Google Scholar 

  3. Merlino, G., Arkoulis, S., Distefano, S., Papagianni, C., Puliafito, A., Papavassiliou, S.: Mobile crowdsensing as a service: a platform for applications on top of sensing clouds. Future Gener. Comput. Syst. 56, 623–639 (2016)

    Article  Google Scholar 

  4. Distefano, S., Merlino, G., Puliafito, A.: Sensing and actuation as a service: a new development for clouds. In: Proceedings of the 2012 IEEE 11th International Symposium on Network Computing and Applications, NCA 2012, pp. 272–275. IEEE Computer Society, Washington, DC (2012)

    Google Scholar 

  5. Ganti, R., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

    Article  Google Scholar 

  6. Hua, F., Lua, Y., Vasilakos, A., Haoc, Q., Maa, R., Patil, Y., Zhanga, T., Lua, J., Li, X., Xiong, N.: Robust cyber-physical systems: concept, models, and implementation. Future Gener. Comput. Syst. 56, 449–475 (2016)

    Article  Google Scholar 

  7. Hahn, A., Ashok, A., Sridhar, S., Govindarasu, M.: Cyber-physical security testbeds: architecture, application, and evaluation for smart grid. IEEE Trans. Smart Grid 4(2), 847–855 (2013)

    Article  Google Scholar 

  8. Mina, B., Kima, Y., Leea, S., Jin, J., Matsona, E.: Finding the optimal location and allocation of relay robots for building a rapid end-to-end wireless communication. Ad Hoc Netw. 39, 23–44 (2016)

    Article  Google Scholar 

  9. Gonga, L., Yanga, W., Zhoub, Z., Mana, D., Caic, H., Zhoud, X., Yange, Z.: An adaptive wireless passive human detection via fine-grained physical layer information. Ad Hoc Netw. 38, 38–50 (2016)

    Article  Google Scholar 

  10. Kosba, A.E., Saeed, A., Youssef, M.: RASID: a robust WLAN device-free passive motion detection system. In: Proceedings of IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 180–189 (2012)

    Google Scholar 

  11. Xiao, J., Wu, K., Yi, Y., Wang, L., Ni, L.: FIMD: fine-grained device-free motion detection. In: Proceedings of IEEE International Conference on Parallel and Distributed Systems (ICPADS), pp. 229–235 (2012)

    Google Scholar 

  12. Joshi, K., Bharadia, D., Kotaru, M., Katti, S.: WiDeo: fine-grained device-free motion tracing using RF backscatter. In: Proceedings of 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2015), pp. 189–204 (2012)

    Google Scholar 

  13. Kabalci, Y.: A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 57, 302–318 (2016)

    Article  Google Scholar 

  14. Kalinin, V.N., Ohtilev, M., Sokolov, B.V.: Mul’tiagentnaja robototehnicheskaja inter-pretacija koncepcii aktivnogo podvizhnogo obyekta. Izvestija Kabardino-Balkarskogo nauchnogo centra RAN 6(38), 148–157 (2010)

    Google Scholar 

  15. Cvirkun, A.D.: Osnovy sinteza struktury slozhnyh sistem. M.: Nauka (1982)

    Google Scholar 

  16. Ronzhin, A.L., Budkov, V.Y., Ronzhin, A.L.: User profile forming based on audiovisual situation analysis in smart meeting room. SPIIRAS Proceedings 23, 482–494 (2012)

    Google Scholar 

  17. Basov, O.O., Struev, D.A., Ronzhin, A.L.: Synthesis of multi-service infocommunication systems with multimodal interfaces. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2015. LNCS, vol. 9247, pp. 128–139. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  18. Ronzhin, A.L., Budkov, VYu.: Multimodal interaction with intelligent meeting room facilities from inside and outside. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) ruSMART 2009. LNCS, vol. 5764, pp. 77–88. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Karpov, A., Ronzhin, A., Kipyatkova, I.: An assistive bi-modal user interface integrating multi-channel speech recognition and computer vision. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part II, HCII 2011. LNCS, vol. 6762, pp. 454–463. Springer, Heidelberg (2011)

    Google Scholar 

  20. Yusupov, R.M., Ronzhin, A.L.: From smart devices to smart space. Herald of the Russian Academy of Sciences, MAIK Nauka 80(1), 45–51 (2010)

    Google Scholar 

Download references

Acknowledgment

The study was performed through the grant of the Russian Science Foundation (project № 16-19-00044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Ronzhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ronzhin, A., Saveliev, A., Basov, O., Solyonyj, S. (2016). Conceptual Model of Cyberphysical Environment Based on Collaborative Work of Distributed Means and Mobile Robots. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2016. Lecture Notes in Computer Science(), vol 9812. Springer, Cham. https://doi.org/10.1007/978-3-319-43955-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43955-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43954-9

  • Online ISBN: 978-3-319-43955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics